Multilingual Open QA on the MIA Shared Task
- URL: http://arxiv.org/abs/2501.04153v1
- Date: Tue, 07 Jan 2025 21:43:09 GMT
- Title: Multilingual Open QA on the MIA Shared Task
- Authors: Navya Yarrabelly, Saloni Mittal, Ketan Todi, Kimihiro Hasegawa,
- Abstract summary: Cross-lingual information retrieval (CLIR) can find relevant text in any language even when the query is posed in a different, possibly low-resource, language.
We propose a simple and effective re-ranking method for improving passage retrieval in open question answering.
- Score: 0.04285555583808084
- License:
- Abstract: Cross-lingual information retrieval (CLIR) ~\cite{shi2021cross, asai2021one, jiang2020cross} for example, can find relevant text in any language such as English(high resource) or Telugu (low resource) even when the query is posed in a different, possibly low-resource, language. In this work, we aim to develop useful CLIR models for this constrained, yet important, setting where we do not require any kind of additional supervision or labelled data for retrieval task and hence can work effectively for low-resource languages. \par We propose a simple and effective re-ranking method for improving passage retrieval in open question answering. The re-ranker re-scores retrieved passages with a zero-shot multilingual question generation model, which is a pre-trained language model, to compute the probability of the input question in the target language conditioned on a retrieved passage, which can be possibly in a different language. We evaluate our method in a completely zero shot setting and doesn't require any training. Thus the main advantage of our method is that our approach can be used to re-rank results obtained by any sparse retrieval methods like BM-25. This eliminates the need for obtaining expensive labelled corpus required for the retrieval tasks and hence can be used for low resource languages.
Related papers
- PromptRefine: Enhancing Few-Shot Performance on Low-Resource Indic Languages with Example Selection from Related Example Banks [57.86928556668849]
Large Language Models (LLMs) have recently demonstrated impressive few-shot learning capabilities through in-context learning (ICL)
ICL performance is highly dependent on the choice of few-shot demonstrations, making the selection of the most optimal examples a persistent research challenge.
In this work, we propose PromptRefine, a novel Alternating Minimization approach for example selection that improves ICL performance on low-resource Indic languages.
arXiv Detail & Related papers (2024-12-07T17:51:31Z) - Likelihood as a Performance Gauge for Retrieval-Augmented Generation [78.28197013467157]
We show that likelihoods serve as an effective gauge for language model performance.
We propose two methods that use question likelihood as a gauge for selecting and constructing prompts that lead to better performance.
arXiv Detail & Related papers (2024-11-12T13:14:09Z) - Think Carefully and Check Again! Meta-Generation Unlocking LLMs for Low-Resource Cross-Lingual Summarization [108.6908427615402]
Cross-lingual summarization ( CLS) aims to generate a summary for the source text in a different target language.
Currently, instruction-tuned large language models (LLMs) excel at various English tasks.
Recent studies have shown that LLMs' performance on CLS tasks remains unsatisfactory even with few-shot settings.
arXiv Detail & Related papers (2024-10-26T00:39:44Z) - Cross-lingual Contextualized Phrase Retrieval [63.80154430930898]
We propose a new task formulation of dense retrieval, cross-lingual contextualized phrase retrieval.
We train our Cross-lingual Contextualized Phrase Retriever (CCPR) using contrastive learning.
On the phrase retrieval task, CCPR surpasses baselines by a significant margin, achieving a top-1 accuracy that is at least 13 points higher.
arXiv Detail & Related papers (2024-03-25T14:46:51Z) - Making Retrieval-Augmented Language Models Robust to Irrelevant Context [55.564789967211844]
An important desideratum of RALMs, is that retrieved information helps model performance when it is relevant.
Recent work has shown that retrieval augmentation can sometimes have a negative effect on performance.
arXiv Detail & Related papers (2023-10-02T18:52:35Z) - Improving Cross-lingual Information Retrieval on Low-Resource Languages
via Optimal Transport Distillation [21.057178077747754]
In this work, we propose OPTICAL: Optimal Transport distillation for low-resource Cross-lingual information retrieval.
By separating the cross-lingual knowledge from knowledge of query document matching, OPTICAL only needs bitext data for distillation training.
Experimental results show that, with minimal training data, OPTICAL significantly outperforms strong baselines on low-resource languages.
arXiv Detail & Related papers (2023-01-29T22:30:36Z) - ZusammenQA: Data Augmentation with Specialized Models for Cross-lingual
Open-retrieval Question Answering System [16.89747171947662]
This paper introduces our proposed system for the MIA Shared Task on Cross-lingual Open-retrieval Question Answering (COQA)
In this challenging scenario, given an input question the system has to gather evidence documents from a multilingual pool and generate an answer in the language of the question.
We devised several approaches combining different model variants for three main components: Data Augmentation, Passage Retrieval, and Answer Generation.
arXiv Detail & Related papers (2022-05-30T10:31:08Z) - One Question Answering Model for Many Languages with Cross-lingual Dense
Passage Retrieval [39.061900747689094]
CORA is a Cross-lingual Open-Retrieval Answer Generation model.
It can answer questions across many languages even when language-specific annotated data or knowledge sources are unavailable.
arXiv Detail & Related papers (2021-07-26T06:02:54Z) - From Masked Language Modeling to Translation: Non-English Auxiliary
Tasks Improve Zero-shot Spoken Language Understanding [24.149299722716155]
We introduce xSID, a new benchmark for cross-lingual Slot and Intent Detection in 13 languages from 6 language families, including a very low-resource dialect.
We propose a joint learning approach, with English SLU training data and non-English auxiliary tasks from raw text, syntax and translation for transfer.
Our results show that jointly learning the main tasks with masked language modeling is effective for slots, while machine translation transfer works best for intent classification.
arXiv Detail & Related papers (2021-05-15T23:51:11Z) - Pivot Through English: Reliably Answering Multilingual Questions without
Document Retrieval [4.4973334555746]
Existing methods for open-retrieval question answering in lower resource languages (LRLs) lag significantly behind English.
We formulate a task setup more realistic to available resources, that circumvents document retrieval to reliably transfer knowledge from English to lower resource languages.
Within this task setup we propose Reranked Maximal Inner Product Search (RM-MIPS), akin to semantic similarity retrieval over the English training set with reranking.
arXiv Detail & Related papers (2020-12-28T04:38:45Z) - Pre-training via Paraphrasing [96.79972492585112]
We introduce MARGE, a pre-trained sequence-to-sequence model learned with an unsupervised multi-lingual paraphrasing objective.
We show it is possible to jointly learn to do retrieval and reconstruction, given only a random initialization.
For example, with no additional task-specific training we achieve BLEU scores of up to 35.8 for document translation.
arXiv Detail & Related papers (2020-06-26T14:43:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.