Learning to Transfer Human Hand Skills for Robot Manipulations
- URL: http://arxiv.org/abs/2501.04169v1
- Date: Tue, 07 Jan 2025 22:33:47 GMT
- Title: Learning to Transfer Human Hand Skills for Robot Manipulations
- Authors: Sungjae Park, Seungho Lee, Mingi Choi, Jiye Lee, Jeonghwan Kim, Jisoo Kim, Hanbyul Joo,
- Abstract summary: We present a method for teaching dexterous manipulation tasks to robots from human hand motion demonstrations.
Our approach learns a joint motion manifold that maps human hand movements, robot hand actions, and object movements in 3D, enabling us to infer one motion from others.
- Score: 12.797862020095856
- License:
- Abstract: We present a method for teaching dexterous manipulation tasks to robots from human hand motion demonstrations. Unlike existing approaches that solely rely on kinematics information without taking into account the plausibility of robot and object interaction, our method directly infers plausible robot manipulation actions from human motion demonstrations. To address the embodiment gap between the human hand and the robot system, our approach learns a joint motion manifold that maps human hand movements, robot hand actions, and object movements in 3D, enabling us to infer one motion component from others. Our key idea is the generation of pseudo-supervision triplets, which pair human, object, and robot motion trajectories synthetically. Through real-world experiments with robot hand manipulation, we demonstrate that our data-driven retargeting method significantly outperforms conventional retargeting techniques, effectively bridging the embodiment gap between human and robotic hands. Website at https://rureadyo.github.io/MocapRobot/.
Related papers
- Naturalistic Robot Arm Trajectory Generation via Representation Learning [4.7682079066346565]
Integration of manipulator robots in household environments suggests a need for more predictable human-like robot motion.
One method of generating naturalistic motion trajectories is via imitation of human demonstrators.
This paper explores a self-supervised imitation learning method using an autoregressive neural network for an assistive drinking task.
arXiv Detail & Related papers (2023-09-14T09:26:03Z) - ImitationNet: Unsupervised Human-to-Robot Motion Retargeting via Shared Latent Space [9.806227900768926]
This paper introduces a novel deep-learning approach for human-to-robot motion.
Our method does not require paired human-to-robot data, which facilitates its translation to new robots.
Our model outperforms existing works regarding human-to-robot similarity in terms of efficiency and precision.
arXiv Detail & Related papers (2023-09-11T08:55:04Z) - Giving Robots a Hand: Learning Generalizable Manipulation with
Eye-in-Hand Human Video Demonstrations [66.47064743686953]
Eye-in-hand cameras have shown promise in enabling greater sample efficiency and generalization in vision-based robotic manipulation.
Videos of humans performing tasks, on the other hand, are much cheaper to collect since they eliminate the need for expertise in robotic teleoperation.
In this work, we augment narrow robotic imitation datasets with broad unlabeled human video demonstrations to greatly enhance the generalization of eye-in-hand visuomotor policies.
arXiv Detail & Related papers (2023-07-12T07:04:53Z) - Zero-Shot Robot Manipulation from Passive Human Videos [59.193076151832145]
We develop a framework for extracting agent-agnostic action representations from human videos.
Our framework is based on predicting plausible human hand trajectories.
We deploy the trained model zero-shot for physical robot manipulation tasks.
arXiv Detail & Related papers (2023-02-03T21:39:52Z) - HERD: Continuous Human-to-Robot Evolution for Learning from Human
Demonstration [57.045140028275036]
We show that manipulation skills can be transferred from a human to a robot through the use of micro-evolutionary reinforcement learning.
We propose an algorithm for multi-dimensional evolution path searching that allows joint optimization of both the robot evolution path and the policy.
arXiv Detail & Related papers (2022-12-08T15:56:13Z) - Robots with Different Embodiments Can Express and Influence Carefulness
in Object Manipulation [104.5440430194206]
This work investigates the perception of object manipulations performed with a communicative intent by two robots.
We designed the robots' movements to communicate carefulness or not during the transportation of objects.
arXiv Detail & Related papers (2022-08-03T13:26:52Z) - Synthesis and Execution of Communicative Robotic Movements with
Generative Adversarial Networks [59.098560311521034]
We focus on how to transfer on two different robotic platforms the same kinematics modulation that humans adopt when manipulating delicate objects.
We choose to modulate the velocity profile adopted by the robots' end-effector, inspired by what humans do when transporting objects with different characteristics.
We exploit a novel Generative Adversarial Network architecture, trained with human kinematics examples, to generalize over them and generate new and meaningful velocity profiles.
arXiv Detail & Related papers (2022-03-29T15:03:05Z) - Robotic Telekinesis: Learning a Robotic Hand Imitator by Watching Humans
on Youtube [24.530131506065164]
We build a system that enables any human to control a robot hand and arm, simply by demonstrating motions with their own hand.
The robot observes the human operator via a single RGB camera and imitates their actions in real-time.
We leverage this data to train a system that understands human hands and retargets a human video stream into a robot hand-arm trajectory that is smooth, swift, safe, and semantically similar to the guiding demonstration.
arXiv Detail & Related papers (2022-02-21T18:59:59Z) - Learning Bipedal Robot Locomotion from Human Movement [0.791553652441325]
We present a reinforcement learning based method for teaching a real world bipedal robot to perform movements directly from motion capture data.
Our method seamlessly transitions from training in a simulation environment to executing on a physical robot.
We demonstrate our method on an internally developed humanoid robot with movements ranging from a dynamic walk cycle to complex balancing and waving.
arXiv Detail & Related papers (2021-05-26T00:49:37Z) - Human Grasp Classification for Reactive Human-to-Robot Handovers [50.91803283297065]
We propose an approach for human-to-robot handovers in which the robot meets the human halfway.
We collect a human grasp dataset which covers typical ways of holding objects with various hand shapes and poses.
We present a planning and execution approach that takes the object from the human hand according to the detected grasp and hand position.
arXiv Detail & Related papers (2020-03-12T19:58:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.