AnyDexGrasp: General Dexterous Grasping for Different Hands with Human-level Learning Efficiency
- URL: http://arxiv.org/abs/2502.16420v1
- Date: Sun, 23 Feb 2025 03:26:06 GMT
- Title: AnyDexGrasp: General Dexterous Grasping for Different Hands with Human-level Learning Efficiency
- Authors: Hao-Shu Fang, Hengxu Yan, Zhenyu Tang, Hongjie Fang, Chenxi Wang, Cewu Lu,
- Abstract summary: We introduce an efficient approach for learning dexterous grasping with minimal data.<n>Our method achieves high performance with human-level learning efficiency: only hundreds of grasp attempts on 40 training objects.<n>This method demonstrates promising applications for humanoid robots, prosthetics, and other domains requiring robust, versatile robotic manipulation.
- Score: 49.868970174484204
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We introduce an efficient approach for learning dexterous grasping with minimal data, advancing robotic manipulation capabilities across different robotic hands. Unlike traditional methods that require millions of grasp labels for each robotic hand, our method achieves high performance with human-level learning efficiency: only hundreds of grasp attempts on 40 training objects. The approach separates the grasping process into two stages: first, a universal model maps scene geometry to intermediate contact-centric grasp representations, independent of specific robotic hands. Next, a unique grasp decision model is trained for each robotic hand through real-world trial and error, translating these representations into final grasp poses. Our results show a grasp success rate of 75-95\% across three different robotic hands in real-world cluttered environments with over 150 novel objects, improving to 80-98\% with increased training objects. This adaptable method demonstrates promising applications for humanoid robots, prosthetics, and other domains requiring robust, versatile robotic manipulation.
Related papers
- Learning to Transfer Human Hand Skills for Robot Manipulations [12.797862020095856]
We present a method for teaching dexterous manipulation tasks to robots from human hand motion demonstrations.<n>Our approach learns a joint motion manifold that maps human hand movements, robot hand actions, and object movements in 3D, enabling us to infer one motion from others.
arXiv Detail & Related papers (2025-01-07T22:33:47Z) - Towards Generalizable Zero-Shot Manipulation via Translating Human
Interaction Plans [58.27029676638521]
We show how passive human videos can serve as a rich source of data for learning such generalist robots.
We learn a human plan predictor that, given a current image of a scene and a goal image, predicts the future hand and object configurations.
We show that our learned system can perform over 16 manipulation skills that generalize to 40 objects.
arXiv Detail & Related papers (2023-12-01T18:54:12Z) - Giving Robots a Hand: Learning Generalizable Manipulation with
Eye-in-Hand Human Video Demonstrations [66.47064743686953]
Eye-in-hand cameras have shown promise in enabling greater sample efficiency and generalization in vision-based robotic manipulation.
Videos of humans performing tasks, on the other hand, are much cheaper to collect since they eliminate the need for expertise in robotic teleoperation.
In this work, we augment narrow robotic imitation datasets with broad unlabeled human video demonstrations to greatly enhance the generalization of eye-in-hand visuomotor policies.
arXiv Detail & Related papers (2023-07-12T07:04:53Z) - HERD: Continuous Human-to-Robot Evolution for Learning from Human
Demonstration [57.045140028275036]
We show that manipulation skills can be transferred from a human to a robot through the use of micro-evolutionary reinforcement learning.
We propose an algorithm for multi-dimensional evolution path searching that allows joint optimization of both the robot evolution path and the policy.
arXiv Detail & Related papers (2022-12-08T15:56:13Z) - Learning Reward Functions for Robotic Manipulation by Observing Humans [92.30657414416527]
We use unlabeled videos of humans solving a wide range of manipulation tasks to learn a task-agnostic reward function for robotic manipulation policies.
The learned rewards are based on distances to a goal in an embedding space learned using a time-contrastive objective.
arXiv Detail & Related papers (2022-11-16T16:26:48Z) - From One Hand to Multiple Hands: Imitation Learning for Dexterous
Manipulation from Single-Camera Teleoperation [26.738893736520364]
We introduce a novel single-camera teleoperation system to collect the 3D demonstrations efficiently with only an iPad and a computer.
We construct a customized robot hand for each user in the physical simulator, which is a manipulator resembling the same kinematics structure and shape of the operator's hand.
With imitation learning using our data, we show large improvement over baselines with multiple complex manipulation tasks.
arXiv Detail & Related papers (2022-04-26T17:59:51Z) - Learning Bipedal Robot Locomotion from Human Movement [0.791553652441325]
We present a reinforcement learning based method for teaching a real world bipedal robot to perform movements directly from motion capture data.
Our method seamlessly transitions from training in a simulation environment to executing on a physical robot.
We demonstrate our method on an internally developed humanoid robot with movements ranging from a dynamic walk cycle to complex balancing and waving.
arXiv Detail & Related papers (2021-05-26T00:49:37Z) - Where is my hand? Deep hand segmentation for visual self-recognition in
humanoid robots [129.46920552019247]
We propose the use of a Convolution Neural Network (CNN) to segment the robot hand from an image in an egocentric view.
We fine-tuned the Mask-RCNN network for the specific task of segmenting the hand of the humanoid robot Vizzy.
arXiv Detail & Related papers (2021-02-09T10:34:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.