CURing Large Models: Compression via CUR Decomposition
- URL: http://arxiv.org/abs/2501.04211v2
- Date: Fri, 10 Jan 2025 14:36:48 GMT
- Title: CURing Large Models: Compression via CUR Decomposition
- Authors: Sanghyeon Park, Soo-Mook Moon,
- Abstract summary: We introduce CURing, a novel model compression method based on CUR matrix decomposition.<n>By identifying and retaining informative rows and columns, CURing significantly reduces model size with minimal performance loss.<n>For example, it reduces Llama3.1-8B's parameters to 7.32B (-9%) in just 129 seconds, over 20 times faster than prior compression methods.
- Score: 1.1510009152620668
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Large deep learning models have achieved remarkable success but are resource-intensive, posing challenges such as memory usage. We introduce CURing, a novel model compression method based on CUR matrix decomposition, which approximates weight matrices as the product of selected columns (C) and rows (R), and a small linking matrix (U). We apply this decomposition to weights chosen based on the combined influence of their magnitudes and activations. By identifying and retaining informative rows and columns, CURing significantly reduces model size with minimal performance loss. For example, it reduces Llama3.1-8B's parameters to 7.32B (-9%) in just 129 seconds, over 20 times faster than prior compression methods.
Related papers
- ResSVD: Residual Compensated SVD for Large Language Model Compression [12.539815070352116]
Large language models (LLMs) have demonstrated impressive capabilities in a wide range of downstream natural language processing tasks.<n>We propose ResSVD, a new post-training SVD-based LLM compression method.<n>We leverage the residual matrix generated during the truncation process to reduce truncation loss.
arXiv Detail & Related papers (2025-05-26T15:14:54Z) - Choose Your Model Size: Any Compression by a Single Gradient Descent [9.074689052563878]
We present Any Compression via Iterative Pruning (ACIP)
ACIP is an algorithmic approach to determine a compression-performance trade-off from a single gradient descent run.
We show that ACIP seamlessly complements common quantization-based compression techniques.
arXiv Detail & Related papers (2025-02-03T18:40:58Z) - HASSLE-free: A unified Framework for Sparse plus Low-Rank Matrix Decomposition for LLMs [15.575498324678373]
A promising compression scheme is to decompose foundation models' dense weights into a sum of sparse plus low-rank matrices.
In this paper, we design a unified framework coined HASSLE-free for (semi-structured) sparse plus low-rank matrix decomposition.
arXiv Detail & Related papers (2025-02-02T20:23:32Z) - tCURLoRA: Tensor CUR Decomposition Based Low-Rank Parameter Adaptation for Medical Image Segmentation [1.3281936946796913]
Transfer learning, by leveraging knowledge from pre-trained models, has significantly enhanced the performance of target tasks.<n>As deep neural networks scale up, full fine-tuning introduces substantial computational and storage challenges.<n>We propose tCURLoRA, a novel fine-tuning method based on tensor CUR decomposition.
arXiv Detail & Related papers (2025-01-04T08:25:32Z) - LoRC: Low-Rank Compression for LLMs KV Cache with a Progressive Compression Strategy [59.1298692559785]
Key-Value ( KV) cache is crucial component in serving transformer-based autoregressive large language models (LLMs)
Existing approaches to mitigate this issue include: (1) efficient attention variants integrated in upcycling stages; (2) KV cache compression at test time; and (3) KV cache compression at test time.
We propose a low-rank approximation of KV weight matrices, allowing plug-in integration with existing transformer-based LLMs without model retraining.
Our method is designed to function without model tuning in upcycling stages or task-specific profiling in test stages.
arXiv Detail & Related papers (2024-10-04T03:10:53Z) - Induced Covariance for Causal Discovery in Linear Sparse Structures [55.2480439325792]
Causal models seek to unravel the cause-effect relationships among variables from observed data.
This paper introduces a novel causal discovery algorithm designed for settings in which variables exhibit linearly sparse relationships.
arXiv Detail & Related papers (2024-10-02T04:01:38Z) - Language Models as Zero-shot Lossless Gradient Compressors: Towards
General Neural Parameter Prior Models [66.1595537904019]
Large language models (LLMs) can act as gradient priors in a zero-shot setting.
We introduce LM-GC, a novel method that integrates LLMs with arithmetic coding.
arXiv Detail & Related papers (2024-09-26T13:38:33Z) - MoDeGPT: Modular Decomposition for Large Language Model Compression [59.361006801465344]
This paper introduces textbfModular bfDecomposition (MoDeGPT), a novel structured compression framework.
MoDeGPT partitions the Transformer block into modules comprised of matrix pairs and reduces the hidden dimensions.
Our experiments show MoDeGPT, without backward propagation, matches or surpasses previous structured compression methods.
arXiv Detail & Related papers (2024-08-19T01:30:14Z) - From GaLore to WeLore: How Low-Rank Weights Non-uniformly Emerge from Low-Rank Gradients [86.40635601953446]
We study the emergence of low-rank structures across different layers of Modern Large Language Models.
We present Weight Low-Rank Projection (WeLore) that unifies weight compression and memory-efficient fine-tuning as ONE.
arXiv Detail & Related papers (2024-07-15T21:05:20Z) - Pruning via Merging: Compressing LLMs via Manifold Alignment Based Layer Merging [14.123313596780726]
We propose Manifold-Based Knowledge Alignment and Layer Merging Compression (MKA)
MKA uses manifold learning and the Normalized Pairwise Information Bottleneck measure to merge similar layers, reducing model size while preserving essential performance.
Our findings show that MKA not only preserves model performance but also achieves substantial compression ratios, outperforming traditional pruning methods.
arXiv Detail & Related papers (2024-06-24T05:57:55Z) - Data-freeWeight Compress and Denoise for Large Language Models [101.53420111286952]
We propose a novel approach termed Data-free Joint Rank-k Approximation for compressing the parameter matrices.
We achieve a model pruning of 80% parameters while retaining 93.43% of the original performance without any calibration data.
arXiv Detail & Related papers (2024-02-26T05:51:47Z) - LQ-LoRA: Low-rank Plus Quantized Matrix Decomposition for Efficient Language Model Finetuning [66.85589263870702]
Our approach uses an iterative algorithm to decompose each pretrained matrix into a high-precision low-rank component and a memory-efficient quantized component.
Experiments on finetuning RoBERTa and LLaMA-2 demonstrate that our low-rank plus quantized matrix decomposition approach (LQ-LoRA) outperforms strong QLoRA and GPTQ-LoRA baselines.
arXiv Detail & Related papers (2023-11-20T18:57:41Z) - Efficient Compression of Overparameterized Deep Models through
Low-Dimensional Learning Dynamics [10.673414267895355]
We present a novel approach for compressing over parameterized models.
Our algorithm improves the training efficiency by more than 2x, without compromising generalization.
arXiv Detail & Related papers (2023-11-08T23:57:03Z) - Mode-wise Principal Subspace Pursuit and Matrix Spiked Covariance Model [13.082805815235975]
We introduce a novel framework called Mode-wise Principal Subspace Pursuit (MOP-UP) to extract hidden variations in both the row and column dimensions for matrix data.
The effectiveness and practical merits of the proposed framework are demonstrated through experiments on both simulated and real datasets.
arXiv Detail & Related papers (2023-07-02T13:59:47Z) - Scaling Pre-trained Language Models to Deeper via Parameter-efficient
Architecture [68.13678918660872]
We design a more capable parameter-sharing architecture based on matrix product operator (MPO)
MPO decomposition can reorganize and factorize the information of a parameter matrix into two parts.
Our architecture shares the central tensor across all layers for reducing the model size.
arXiv Detail & Related papers (2023-03-27T02:34:09Z) - Language model compression with weighted low-rank factorization [73.61874728240568]
We introduce Fisher information to weigh the importance of parameters affecting the model prediction.
We find that our resulting task accuracy is much closer to the original model's performance.
Our method can directly compress a task-specific model while achieving better performance than other compact model strategies.
arXiv Detail & Related papers (2022-06-30T21:57:07Z) - Robust CUR Decomposition: Theory and Imaging Applications [9.280330114137778]
This paper considers the use of Robust PCA in a CUR decomposition framework and applications thereof.
We consider two key imaging applications of Robust PCA: video foreground-background separation and face modeling.
arXiv Detail & Related papers (2021-01-05T17:58:15Z) - A Generic Network Compression Framework for Sequential Recommender
Systems [71.81962915192022]
Sequential recommender systems (SRS) have become the key technology in capturing user's dynamic interests and generating high-quality recommendations.
We propose a compressed sequential recommendation framework, termed as CpRec, where two generic model shrinking techniques are employed.
By the extensive ablation studies, we demonstrate that the proposed CpRec can achieve up to 4$sim$8 times compression rates in real-world SRS datasets.
arXiv Detail & Related papers (2020-04-21T08:40:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.