論文の概要: Statistical Uncertainty Quantification for Aggregate Performance Metrics in Machine Learning Benchmarks
- arxiv url: http://arxiv.org/abs/2501.04234v1
- Date: Wed, 08 Jan 2025 02:17:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-09 14:56:29.719317
- Title: Statistical Uncertainty Quantification for Aggregate Performance Metrics in Machine Learning Benchmarks
- Title(参考訳): 機械学習ベンチマークにおける集約性能指標の統計的不確実性定量化
- Authors: Rachel Longjohn, Giri Gopalan, Emily Casleton,
- Abstract要約: 複数のタスクにまたがって集約されたメトリクスの不確かさを定量化するために,統計的手法がいかに用いられるかを示す。
これらの技術は、全体的なパフォーマンスが劣っているにもかかわらず、特定のタスクに対する特定のモデルの優位性のような洞察を浮き彫りにする。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Modern artificial intelligence is supported by machine learning models (e.g., foundation models) that are pretrained on a massive data corpus and then adapted to solve a variety of downstream tasks. To summarize performance across multiple tasks, evaluation metrics are often aggregated into a summary metric, e.g., average accuracy across 10 question-answering tasks. When aggregating evaluation metrics, it is useful to incorporate uncertainty in the aggregate metric in order to gain a more realistic understanding of model performance. Our objective in this work is to demonstrate how statistical methodology can be used for quantifying uncertainty in metrics that have been aggregated across multiple tasks. The methods we emphasize are bootstrapping, Bayesian hierarchical (i.e., multilevel) modeling, and the visualization of task weightings that consider standard errors. These techniques reveal insights such as the dominance of a specific model for certain types of tasks despite an overall poor performance. We use a popular ML benchmark, the Visual Task Adaptation Benchmark (VTAB), to demonstrate the usefulness of our approaches.
- Abstract(参考訳): 現代の人工知能は、巨大なデータコーパスで事前訓練された機械学習モデル(ファンデーションモデルなど)によってサポートされ、さまざまな下流タスクの解決に適応する。
複数のタスクにまたがるパフォーマンスを要約するために、評価指標は、例えば10の質問応答タスクの平均精度など、サマリメトリックに集約されることが多い。
評価指標を集約する場合、モデル性能のより現実的な理解を得るために、集計指標に不確実性を組み込むことが有用である。
本研究の目的は,複数のタスクにまたがって集約されたメトリクスにおける不確実性を定量化するために,統計的方法論をどのように利用できるかを実証することである。
私たちが強調する手法は、ブートストラップ、ベイジアン階層的(マルチレベル)モデリング、および標準エラーを考慮したタスク重み付けの可視化である。
これらの技術は、全体的なパフォーマンスが劣っているにもかかわらず、特定のタスクに対する特定のモデルの優位性のような洞察を浮き彫りにする。
一般的なMLベンチマークであるVisual Task Adaptation Benchmark(VTAB)を使用して、アプローチの有用性を実証しています。
関連論文リスト
- Learning Task Representations from In-Context Learning [73.72066284711462]
大規模言語モデル(LLM)は、文脈内学習において顕著な習熟性を示している。
ICLプロンプトにおけるタスク情報をアテンションヘッドの関数として符号化するための自動定式化を導入する。
提案手法の有効性は,最後の隠れ状態の分布と最適に実行されたテキスト内学習モデルとの整合性に起因していることを示す。
論文 参考訳(メタデータ) (2025-02-08T00:16:44Z) - Towards Unified Benchmark and Models for Multi-Modal Perceptual Metrics [37.86612817818566]
CLIPや大規模マルチモーダルモデル(LMM)などの汎用視覚言語モデルは、ゼロショット知覚メトリクスとして適用することができる。
提案するUniSim-Benchは、7つのマルチモーダルな知覚的類似性タスクと合計25のデータセットを包含するベンチマークである。
我々の評価では、汎用モデルは平均的に合理的に機能するが、個々のタスクの特化モデルに遅れが生じることが多い。
論文 参考訳(メタデータ) (2024-12-13T22:38:09Z) - FamiCom: Further Demystifying Prompts for Language Models with Task-Agnostic Performance Estimation [73.454943870226]
言語モデルは、コンテキスト内学習能力に優れています。
本稿では,タスク非依存のパフォーマンス推定のためのより包括的な尺度であるFamiComを提案する。
論文 参考訳(メタデータ) (2024-06-17T06:14:55Z) - Task-Distributionally Robust Data-Free Meta-Learning [99.56612787882334]
Data-Free Meta-Learning (DFML)は、複数の事前学習モデルを活用することで、独自のトレーニングデータを必要とせずに、新しいタスクを効率的に学習することを目的としている。
TDS(Task-Distribution Shift)とTDC(Task-Distribution Corruption)の2つの大きな課題を初めて明らかにした。
論文 参考訳(メタデータ) (2023-11-23T15:46:54Z) - A Control-Centric Benchmark for Video Prediction [69.22614362800692]
本稿では,アクション条件付きビデオ予測のベンチマークを,制御ベンチマークの形式で提案する。
私たちのベンチマークには、11のタスクカテゴリと310のタスクインスタンス定義を備えたシミュレーション環境が含まれています。
次に、ベンチマークを活用して、スケールするモデルサイズ、トレーニングデータの量、モデルアンサンブルの影響を調査します。
論文 参考訳(メタデータ) (2023-04-26T17:59:45Z) - Evaluating Representations with Readout Model Switching [19.907607374144167]
本稿では,最小記述長(MDL)の原理を用いて評価指標を考案する。
我々は、読み出しモデルのためのハイブリッド離散および連続値モデル空間を設計し、それらの予測を組み合わせるために切替戦略を用いる。
提案手法はオンライン手法で効率的に計算でき,様々なアーキテクチャの事前学習された視覚エンコーダに対する結果を示す。
論文 参考訳(メタデータ) (2023-02-19T14:08:01Z) - SUPERB-SG: Enhanced Speech processing Universal PERformance Benchmark
for Semantic and Generative Capabilities [76.97949110580703]
各種音声タスクの事前学習モデルを評価するための新しいベンチマークであるSUPERB-SGを紹介する。
データドメインのシフトの下で、事前訓練されたモデルによって学習された表現の堅牢性をテストするために、軽量な方法論を使用します。
また,SUPERB-SGのタスク多様性とタスク監督の限定が,モデル表現の一般化性を評価する効果的な方法であることを示す。
論文 参考訳(メタデータ) (2022-03-14T04:26:40Z) - BAMLD: Bayesian Active Meta-Learning by Disagreement [39.59987601426039]
本稿では,メタトレーニングタスクのラベル付け要求数を削減するための情報理論アクティブタスク選択機構を提案する。
本稿では,既存の取得メカニズムと比較した実験結果について報告する。
論文 参考訳(メタデータ) (2021-10-19T13:06:51Z) - Post-hoc Models for Performance Estimation of Machine Learning Inference [22.977047604404884]
さまざまなシナリオにおいて、推論中に機械学習モデルがどれだけうまく機能するかを推定することが重要である。
性能評価をさまざまなメトリクスやシナリオに体系的に一般化する。
提案したポストホックモデルは標準信頼ベースラインを一貫して上回っていることがわかった。
論文 参考訳(メタデータ) (2021-10-06T02:20:37Z) - Meta-Learned Confidence for Few-shot Learning [60.6086305523402]
数ショットのメトリックベースのアプローチのための一般的なトランスダクティブ推論手法は、最も確実なクエリ例の平均で、各クラスのプロトタイプを更新することである。
本稿では,各クエリの信頼度をメタラーニングして,ラベルのないクエリに最適な重みを割り当てる手法を提案する。
4つのベンチマークデータセットに対してメタ学習の信頼度で、少数ショットの学習モデルを検証した。
論文 参考訳(メタデータ) (2020-02-27T10:22:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。