An Analysis of Model Robustness across Concurrent Distribution Shifts
- URL: http://arxiv.org/abs/2501.04288v1
- Date: Wed, 08 Jan 2025 05:27:16 GMT
- Title: An Analysis of Model Robustness across Concurrent Distribution Shifts
- Authors: Myeongho Jeon, Suhwan Choi, Hyoje Lee, Teresa Yeo,
- Abstract summary: Machine learning models, meticulously optimized for source data, often fail to predict target data when faced with distribution shifts (DSs)
We evaluate 26 algorithms that range from simple augmentations to zero-shot inference using foundation models, across 168 source-target pairs from eight datasets.
Our analysis of over 100K models reveals that concurrent DSs typically worsen performance compared to a single shift, with certain exceptions.
- Score: 6.043526197249358
- License:
- Abstract: Machine learning models, meticulously optimized for source data, often fail to predict target data when faced with distribution shifts (DSs). Previous benchmarking studies, though extensive, have mainly focused on simple DSs. Recognizing that DSs often occur in more complex forms in real-world scenarios, we broadened our study to include multiple concurrent shifts, such as unseen domain shifts combined with spurious correlations. We evaluated 26 algorithms that range from simple heuristic augmentations to zero-shot inference using foundation models, across 168 source-target pairs from eight datasets. Our analysis of over 100K models reveals that (i) concurrent DSs typically worsen performance compared to a single shift, with certain exceptions, (ii) if a model improves generalization for one distribution shift, it tends to be effective for others, and (iii) heuristic data augmentations achieve the best overall performance on both synthetic and real-world datasets.
Related papers
- MITA: Bridging the Gap between Model and Data for Test-time Adaptation [68.62509948690698]
Test-Time Adaptation (TTA) has emerged as a promising paradigm for enhancing the generalizability of models.
We propose Meet-In-The-Middle based MITA, which introduces energy-based optimization to encourage mutual adaptation of the model and data from opposing directions.
arXiv Detail & Related papers (2024-10-12T07:02:33Z) - Learning Divergence Fields for Shift-Robust Graph Representations [73.11818515795761]
In this work, we propose a geometric diffusion model with learnable divergence fields for the challenging problem with interdependent data.
We derive a new learning objective through causal inference, which can guide the model to learn generalizable patterns of interdependence that are insensitive across domains.
arXiv Detail & Related papers (2024-06-07T14:29:21Z) - SMaRt: Improving GANs with Score Matching Regularity [94.81046452865583]
Generative adversarial networks (GANs) usually struggle in learning from highly diverse data, whose underlying manifold is complex.
We show that score matching serves as a promising solution to this issue thanks to its capability of persistently pushing the generated data points towards the real data manifold.
We propose to improve the optimization of GANs with score matching regularity (SMaRt)
arXiv Detail & Related papers (2023-11-30T03:05:14Z) - Private Synthetic Data Meets Ensemble Learning [15.425653946755025]
When machine learning models are trained on synthetic data and then deployed on real data, there is often a performance drop.
We introduce a new ensemble strategy for training downstream models, with the goal of enhancing their performance when used on real data.
arXiv Detail & Related papers (2023-10-15T04:24:42Z) - Assaying Out-Of-Distribution Generalization in Transfer Learning [103.57862972967273]
We take a unified view of previous work, highlighting message discrepancies that we address empirically.
We fine-tune over 31k networks, from nine different architectures in the many- and few-shot setting.
arXiv Detail & Related papers (2022-07-19T12:52:33Z) - An Empirical Study on Distribution Shift Robustness From the Perspective
of Pre-Training and Data Augmentation [91.62129090006745]
This paper studies the distribution shift problem from the perspective of pre-training and data augmentation.
We provide the first comprehensive empirical study focusing on pre-training and data augmentation.
arXiv Detail & Related papers (2022-05-25T13:04:53Z) - DRFLM: Distributionally Robust Federated Learning with Inter-client
Noise via Local Mixup [58.894901088797376]
federated learning has emerged as a promising approach for training a global model using data from multiple organizations without leaking their raw data.
We propose a general framework to solve the above two challenges simultaneously.
We provide comprehensive theoretical analysis including robustness analysis, convergence analysis, and generalization ability.
arXiv Detail & Related papers (2022-04-16T08:08:29Z) - A Fine-Grained Analysis on Distribution Shift [24.084676204709723]
We introduce a framework that enables fine-grained analysis of various distribution shifts.
We evaluate 19 distinct methods grouped into five categories across both synthetic and real-world datasets.
Our framework can be easily extended to include new methods, shifts, and datasets.
arXiv Detail & Related papers (2021-10-21T17:57:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.