論文の概要: RoRA: Efficient Fine-Tuning of LLM with Reliability Optimization for Rank Adaptation
- arxiv url: http://arxiv.org/abs/2501.04315v2
- Date: Sat, 11 Jan 2025 18:17:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-14 10:43:40.411875
- Title: RoRA: Efficient Fine-Tuning of LLM with Reliability Optimization for Rank Adaptation
- Title(参考訳): RoRA: ランク適応の信頼性最適化によるLLMの高精度微調整
- Authors: Jun Liu, Zhenglun Kong, Peiyan Dong, Changdi Yang, Xuan Shen, Pu Zhao, Hao Tang, Geng Yuan, Wei Niu, Wenbin Zhang, Xue Lin, Dong Huang, Yanzhi Wang,
- Abstract要約: Low-Rank Adaptation (LoRA) は大規模言語モデルの微調整に広く使われ、有効である。
本稿では,LoRAのスケーリング係数を最適化するシンプルな手法であるRoRA(Rank-adaptive Reliability Optimization)を提案する。
RoRAは、ランクサイズが大きくなるにつれて性能が向上し、微調整プルーニングモデルにおける精度回復というより困難な課題を克服する。
- 参考スコア(独自算出の注目度): 59.34193580856381
- License:
- Abstract: Fine-tuning helps large language models (LLM) recover degraded information and enhance task performance. Although Low-Rank Adaptation (LoRA) is widely used and effective for fine-tuning, we have observed that its scaling factor can limit or even reduce performance as the rank size increases. To address this issue, we propose RoRA (Rank-adaptive Reliability Optimization), a simple yet effective method for optimizing LoRA's scaling factor. By replacing $\alpha/r$ with $\alpha/\sqrt{r}$, RoRA ensures improved performance as rank size increases. Moreover, RoRA enhances low-rank adaptation in fine-tuning uncompressed models and excels in the more challenging task of accuracy recovery when fine-tuning pruned models. Extensive experiments demonstrate the effectiveness of RoRA in fine-tuning both uncompressed and pruned models. RoRA surpasses the state-of-the-art (SOTA) in average accuracy and robustness on LLaMA-7B/13B, LLaMA2-7B, and LLaMA3-8B, specifically outperforming LoRA and DoRA by 6.5% and 2.9% on LLaMA-7B, respectively. In pruned model fine-tuning, RoRA shows significant advantages; for SHEARED-LLAMA-1.3, a LLaMA-7B with 81.4% pruning, RoRA achieves 5.7% higher average accuracy than LoRA and 3.9% higher than DoRA.
- Abstract(参考訳): ファインチューニングは、大きな言語モデル(LLM)が劣化した情報を回復し、タスクパフォーマンスを向上させるのに役立つ。
ローランド適応 (LoRA) は, 微調整に広く用いられ, 有効であるが, ランクが大きくなるにつれて, スケーリング係数が制限されるか, 性能を低下させることがある。
この問題に対処するため,LoRAのスケーリング係数を最適化するシンプルな手法であるRoRA(Rank-Adaptive Reliability Optimization)を提案する。
$\alpha/r$を$\alpha/\sqrt{r}$に置き換えることで、ランクサイズが大きくなるにつれてパフォーマンスが向上する。
さらに、RoRAは、微調整未圧縮モデルにおける低ランク適応を強化し、微調整未圧縮モデルにおいて、より困難な精度回復タスクに優れる。
広汎な実験は、圧縮されていないモデルと刈り取られたモデルの両方を微調整する際のRoRAの有効性を示す。
RoRAは、LLaMA-7B/13B、LLaMA2-7B、LLaMA3-8Bの平均精度と堅牢性を上回り、それぞれLLaMA-7Bの6.5%と2.9%を上回っている。
SHEARED-LLAMA-1.3、81.4%のプルーニングを持つLLaMA-7Bでは、RoRAはLoRAよりも平均精度が5.7%高く、DoRAより3.9%高い。
関連論文リスト
- LoRA Done RITE: Robust Invariant Transformation Equilibration for LoRA Optimization [78.93425154518705]
低ランク適応 (LoRA) は、メモリ要求を低減し、LLMのパラメータ効率の高い微調整法である。
本稿では,LoRA最適化のための適応行列プレコンディショニング手法であるLoRA-RITEを紹介する。
論文 参考訳(メタデータ) (2024-10-27T22:57:12Z) - Randomized Asymmetric Chain of LoRA: The First Meaningful Theoretical Framework for Low-Rank Adaptation [58.288682735160585]
Low-Rank Adaptation (LoRA) は、ファインチューニングモデルの一般的なテクニックである。
LoRAは、フルパラメータの微調整と比較すると、しばしば実行されます。
本稿では,LoRA手法の適応率を厳密に分析するフレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-10T18:51:53Z) - LoRA-Pro: Are Low-Rank Adapters Properly Optimized? [121.0693322732454]
LoRAとしても知られる低ランク適応は、基礎モデルのパラメータ効率の細かい調整のための顕著な手法として登場した。
計算効率にもかかわらず、LoRAは完全な微調整に比べて性能が劣っている。
低ランク行列の勾配を戦略的に調整することでLoRAの性能を向上させる手法であるLoRA-Proを導入する。
論文 参考訳(メタデータ) (2024-07-25T17:57:12Z) - RoLoRA: Fine-tuning Rotated Outlier-free LLMs for Effective Weight-Activation Quantization [38.23587031169402]
有効重量活性化量子化のための最初のLoRA方式であるRoLoRAを提案する。
我々は,LLaMA2-7B/13B,LLaMA3-8Bモデルにおけるロロラの評価を行い,最大29.5%の精度で4ビットの重量活性化量子化LLaMA2-13Bを実現した。
論文 参考訳(メタデータ) (2024-07-10T20:52:18Z) - LoRA-GA: Low-Rank Adaptation with Gradient Approximation [5.685201910521295]
微調整された大規模事前訓練モデルは、計算とメモリコストの点で極めて高価である。
LoRAは、パラメータが著しく少ない補助的な低ランクモデルを微調整することで、コスト効率のよい代替手段を提供する。
LoRAは完全な微調整に比べてかなり遅い速度で収束し、全体的な計算能力が向上し、しばしばテスト性能が悪化する。
論文 参考訳(メタデータ) (2024-07-06T08:37:21Z) - ALoRA: Allocating Low-Rank Adaptation for Fine-tuning Large Language Models [8.251547772610301]
低ランク適応 (LoRA) の方法論を、低ランク適応 (AloRA) と呼ぶ革新的なアプローチに拡張する。
まず,各ランクの重要度を効果的に推定できる新しい手法であるAB-LoRAを提案する。
第2に、AB-LoRAによって導かれ、我々は徐々にLoRAのランクに多く負の影響を及ぼし、高いランクを必要とする重要なトランスフォーマーモジュールにローラの予算を割り当てる。
論文 参考訳(メタデータ) (2024-03-24T15:09:55Z) - PRoLoRA: Partial Rotation Empowers More Parameter-Efficient LoRA [45.38491644250814]
部分回転型低ランク適応(PRoLoRA)は層内共有機構である。
PRoLoRAはその利点を保ち、ピアパラメータ共有手法の欠点を効果的に回避する。
実験によりPRoLoRAのパラメータ効率が著しく向上した。
論文 参考訳(メタデータ) (2024-02-24T13:39:05Z) - DoRA: Weight-Decomposed Low-Rank Adaptation [57.68678247436207]
本稿では,FTとLoRAの相違点を明らかにするために,新しい重み分解解析法を提案する。
本研究は、FTの学習能力に類似することを目的として、重量分解低ランク適応(DoRA)を提案する。
DoRAは、事前訓練された重量を、微調整のための大きさと方向の2つの構成要素に分解する。
論文 参考訳(メタデータ) (2024-02-14T17:59:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。