Eve: Efficient Multimodal Vision Language Models with Elastic Visual Experts
- URL: http://arxiv.org/abs/2501.04322v2
- Date: Thu, 23 Jan 2025 08:24:29 GMT
- Title: Eve: Efficient Multimodal Vision Language Models with Elastic Visual Experts
- Authors: Miao Rang, Zhenni Bi, Chuanjian Liu, Yehui Tang, Kai Han, Yunhe Wang,
- Abstract summary: We introduce the innovative framework of Efficient Vision Language Models with Elastic Visual Experts (Eve)
By strategically incorporating visual expertise at multiple stages of training, Eve strikes a balance between preserving linguistic abilities and augmenting multimodal capabilities.
Eve distinctly outperforms in language benchmarks and achieves state-of-the-art results 68.87% in VLM Benchmarks.
- Score: 37.81475180129456
- License:
- Abstract: Multimodal vision language models (VLMs) have made significant progress with the support of continuously increasing model sizes and data volumes. Running VLMs on edge devices has become a challenge for their widespread application. There are several efficient VLM efforts, but they often sacrifice linguistic capabilities to enhance multimodal abilities, or require extensive training. To address this quandary,we introduce the innovative framework of Efficient Vision Language Models with Elastic Visual Experts (Eve). By strategically incorporating adaptable visual expertise at multiple stages of training, Eve strikes a balance between preserving linguistic abilities and augmenting multimodal capabilities. This balanced approach results in a versatile model with only 1.8B parameters that delivers significant improvements in both multimodal and linguistic tasks. Notably, in configurations below 3B parameters, Eve distinctly outperforms in language benchmarks and achieves state-of-the-art results 68.87% in VLM Benchmarks. Additionally, its multimodal accuracy outstrips that of the larger 7B LLaVA-1.5 model. Our code is available at https://github.com/rangmiao/Eve.
Related papers
- Expanding Performance Boundaries of Open-Source Multimodal Models with Model, Data, and Test-Time Scaling [128.24325909395188]
We introduce InternVL 2.5, an advanced multimodal large language model (MLLM) series that builds upon InternVL 2.0.
InternVL 2.5 exhibits competitive performance, rivaling leading commercial models such as GPT-4o and Claude-3.5-Sonnet.
We hope this model contributes to the open-source community by setting new standards for developing and applying multimodal AI systems.
arXiv Detail & Related papers (2024-12-06T18:57:08Z) - Liquid: Language Models are Scalable Multi-modal Generators [112.71734051183726]
Liquid is an auto-regressive generation paradigm that seamlessly integrates visual comprehension and generation.
Unlike previous multimodal large language model (MLLM), Liquid achieves this integration using a single large language model.
For the first time, Liquid uncovers a scaling law that performance drop unavoidably brought by the unified training of visual and language tasks.
arXiv Detail & Related papers (2024-12-05T16:48:16Z) - EMMA: Efficient Visual Alignment in Multi-Modal LLMs [56.03417732498859]
EMMA is a lightweight cross-modality module designed to efficiently fuse visual and textual encodings.
EMMA boosts performance across multiple tasks by up to 9.3% while significantly improving robustness against hallucinations.
arXiv Detail & Related papers (2024-10-02T23:00:31Z) - NVLM: Open Frontier-Class Multimodal LLMs [64.00053046838225]
We introduce NVLM 1.0, a family of frontier-class multimodal large language models (LLMs) that achieve state-of-the-art results on vision-language tasks.
We propose a novel architecture that enhances both training efficiency and multimodal reasoning capabilities.
We develop production-grade multimodality for the NVLM-1.0 models, enabling them to excel in vision-language tasks.
arXiv Detail & Related papers (2024-09-17T17:59:06Z) - VL-Mamba: Exploring State Space Models for Multimodal Learning [22.701028299912398]
In this work, we propose VL-Mamba, a multimodal large language model based on state space models.
Specifically, we first replace the transformer-based backbone language model such as LLama or Vicuna with the pre-trained Mamba language model.
arXiv Detail & Related papers (2024-03-20T13:48:50Z) - eP-ALM: Efficient Perceptual Augmentation of Language Models [70.47962271121389]
We propose to direct effort to efficient adaptations of existing models, and propose to augment Language Models with perception.
Existing approaches for adapting pretrained models for vision-language tasks still rely on several key components that hinder their efficiency.
We show that by freezing more than 99% of total parameters, training only one linear projection layer, and prepending only one trainable token, our approach (dubbed eP-ALM) significantly outperforms other baselines on VQA and Captioning.
arXiv Detail & Related papers (2023-03-20T19:20:34Z) - Enabling Multimodal Generation on CLIP via Vision-Language Knowledge
Distillation [79.72299298976525]
We propose to augment a vision-language pre-training model with a textual pre-trained language model (PLM) via vision-language knowledge distillation (VLKD)
Experiments show that the resulting model has strong zero-shot performance on multimodal generation tasks, such as open-ended visual question answering and image captioning.
The original textual language understanding and generation ability of the PLM is maintained after VLKD, which makes our model versatile for both multimodal and unimodal tasks.
arXiv Detail & Related papers (2022-03-12T09:33:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.