Aya Vision: Advancing the Frontier of Multilingual Multimodality
- URL: http://arxiv.org/abs/2505.08751v1
- Date: Tue, 13 May 2025 17:03:48 GMT
- Title: Aya Vision: Advancing the Frontier of Multilingual Multimodality
- Authors: Saurabh Dash, Yiyang Nan, John Dang, Arash Ahmadian, Shivalika Singh, Madeline Smith, Bharat Venkitesh, Vlad Shmyhlo, Viraat Aryabumi, Walter Beller-Morales, Jeremy Pekmez, Jason Ozuzu, Pierre Richemond, Acyr Locatelli, Nick Frosst, Phil Blunsom, Aidan Gomez, Ivan Zhang, Marzieh Fadaee, Manoj Govindassamy, Sudip Roy, Matthias Gallé, Beyza Ermis, Ahmet Üstün, Sara Hooker,
- Abstract summary: We develop a synthetic annotation framework that curates high-quality, diverse multilingual multimodal instruction data.<n>We also propose a cross-modal model merging technique that mitigates catastrophic forgetting.<n>Our work advances multilingual progress on the multi-modal frontier, and provides insights into techniques that effectively bend the need for compute.
- Score: 15.981889066681424
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Building multimodal language models is fundamentally challenging: it requires aligning vision and language modalities, curating high-quality instruction data, and avoiding the degradation of existing text-only capabilities once vision is introduced. These difficulties are further magnified in the multilingual setting, where the need for multimodal data in different languages exacerbates existing data scarcity, machine translation often distorts meaning, and catastrophic forgetting is more pronounced. To address the aforementioned challenges, we introduce novel techniques spanning both data and modeling. First, we develop a synthetic annotation framework that curates high-quality, diverse multilingual multimodal instruction data, enabling Aya Vision models to produce natural, human-preferred responses to multimodal inputs across many languages. Complementing this, we propose a cross-modal model merging technique that mitigates catastrophic forgetting, effectively preserving text-only capabilities while simultaneously enhancing multimodal generative performance. Aya-Vision-8B achieves best-in-class performance compared to strong multimodal models such as Qwen-2.5-VL-7B, Pixtral-12B, and even much larger Llama-3.2-90B-Vision. We further scale this approach with Aya-Vision-32B, which outperforms models more than twice its size, such as Molmo-72B and LLaMA-3.2-90B-Vision. Our work advances multilingual progress on the multi-modal frontier, and provides insights into techniques that effectively bend the need for compute while delivering extremely high performance.
Related papers
- MoCa: Modality-aware Continual Pre-training Makes Better Bidirectional Multimodal Embeddings [75.0617088717528]
MoCa is a framework for transforming pre-trained VLM backbones into effective bidirectional embedding models.<n>MoCa consistently improves performance across MMEB and ViDoRe-v2 benchmarks, achieving new state-of-the-art results.
arXiv Detail & Related papers (2025-06-29T06:41:00Z) - Make Imagination Clearer! Stable Diffusion-based Visual Imagination for Multimodal Machine Translation [40.42326040668964]
We introduce a stable diffusion-based imagination network into a multimodal large language model (MLLM) to explicitly generate an image for each source sentence.<n>We build human feedback with reinforcement learning to ensure the consistency of the generated image with the source sentence.<n> Experimental results show that our model significantly outperforms existing multimodal MT and text-only MT.
arXiv Detail & Related papers (2024-12-17T07:41:23Z) - Lyra: An Efficient and Speech-Centric Framework for Omni-Cognition [57.131546757903834]
Lyra is an efficient MLLM that enhances multimodal abilities, including advanced long-speech comprehension, sound understanding, cross-modality efficiency, and seamless speech interaction.<n>Lyra achieves state-of-the-art performance on various vision-language, vision-speech, and speech-language benchmarks, while also using fewer computational resources and less training data.
arXiv Detail & Related papers (2024-12-12T17:50:39Z) - ADEM-VL: Adaptive and Embedded Fusion for Efficient Vision-Language Tuning [38.26304604660713]
ADEM-VL is an efficient vision-language method that tunes models based on pretrained large language models.
Our framework surpasses existing methods by an average accuracy of 0.77% on ScienceQA dataset.
arXiv Detail & Related papers (2024-10-23T11:31:06Z) - IAA: Inner-Adaptor Architecture Empowers Frozen Large Language Model with Multimodal Capabilities [4.269326314400742]
We introduce the Inner-Adaptor Architecture for multimodal large language models (MLLMs)<n>The architecture incorporates multiple multimodal adaptors at varying depths within the large language model to facilitate direct interaction with the inherently text-oriented transformer layers.<n>Unlike previous approaches of freezing language models that require large-scale aligned data, our proposed architecture is able to achieve superior performance on small-scale datasets.
arXiv Detail & Related papers (2024-08-23T08:10:13Z) - VL-Mamba: Exploring State Space Models for Multimodal Learning [22.701028299912398]
In this work, we propose VL-Mamba, a multimodal large language model based on state space models.
Specifically, we first replace the transformer-based backbone language model such as LLama or Vicuna with the pre-trained Mamba language model.
arXiv Detail & Related papers (2024-03-20T13:48:50Z) - DeepSpeed-VisualChat: Multi-Round Multi-Image Interleave Chat via
Multi-Modal Causal Attention [55.2825684201129]
DeepSpeed-VisualChat is designed to optimize Large Language Models (LLMs) by incorporating multi-modal capabilities.
Our framework is notable for (1) its open-source support for multi-round and multi-image dialogues, (2) introducing an innovative multi-modal causal attention mechanism, and (3) utilizing data blending techniques on existing datasets to assure seamless interactions.
arXiv Detail & Related papers (2023-09-25T17:53:29Z) - TextBind: Multi-turn Interleaved Multimodal Instruction-following in the Wild [102.93338424976959]
We introduce TextBind, an almost annotation-free framework for empowering larger language models with the multi-turn interleaved instruction-following capabilities.
Our approach requires only image-caption pairs and generates multi-turn multimodal instruction-response conversations from a language model.
To accommodate interleaved image-text inputs and outputs, we devise MIM, a language model-centric architecture that seamlessly integrates image encoder and decoder models.
arXiv Detail & Related papers (2023-09-14T15:34:01Z) - RC3: Regularized Contrastive Cross-lingual Cross-modal Pre-training [84.23022072347821]
We propose a regularized cross-lingual visio-textual contrastive learning objective that constrains the representation proximity of weakly-aligned visio-textual inputs.
Experiments on 5 downstream multi-modal tasks across 6 languages demonstrate the effectiveness of our proposed method.
arXiv Detail & Related papers (2023-05-13T14:41:05Z) - Enabling Multimodal Generation on CLIP via Vision-Language Knowledge
Distillation [79.72299298976525]
We propose to augment a vision-language pre-training model with a textual pre-trained language model (PLM) via vision-language knowledge distillation (VLKD)
Experiments show that the resulting model has strong zero-shot performance on multimodal generation tasks, such as open-ended visual question answering and image captioning.
The original textual language understanding and generation ability of the PLM is maintained after VLKD, which makes our model versatile for both multimodal and unimodal tasks.
arXiv Detail & Related papers (2022-03-12T09:33:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.