論文の概要: Federated Fine-Tuning of LLMs: Framework Comparison and Research Directions
- arxiv url: http://arxiv.org/abs/2501.04436v1
- Date: Wed, 08 Jan 2025 11:37:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-09 14:56:39.205092
- Title: Federated Fine-Tuning of LLMs: Framework Comparison and Research Directions
- Title(参考訳): LLMのFederated Fine-Tuning:フレームワークの比較と研究の方向性
- Authors: Na Yan, Yang Su, Yansha Deng, Robert Schober,
- Abstract要約: Federated Learning(FL)は、分散プライベートデータセットを使用して、トレーニング済みの大規模言語モデル(LLM)を微調整するための、プライバシ保護ソリューションを提供する。
本稿では、知識蒸留(KD)とスプリットラーニング(SL)を統合し、これらの問題を緩和する3つの先進的連合LLM(FedLLM)フレームワークの比較分析を行う。
- 参考スコア(独自算出の注目度): 59.5243730853157
- License:
- Abstract: Federated learning (FL) provides a privacy-preserving solution for fine-tuning pre-trained large language models (LLMs) using distributed private datasets, enabling task-specific adaptation while preserving data privacy. However, fine-tuning the extensive parameters in LLMs is particularly challenging in resource-constrained federated scenarios due to the significant communication and computational costs. To gain a deeper understanding of how these challenges can be addressed, this article conducts a comparative analysis three advanced federated LLM (FedLLM) frameworks that integrate knowledge distillation (KD) and split learning (SL) to mitigate these issues: 1) FedLLMs, where clients upload model parameters or gradients to enable straightforward and effective fine-tuning; 2) KD-FedLLMs, which leverage KD for efficient knowledge sharing via logits; and 3) Split-FedLLMs, which split the LLMs into two parts, with one part executed on the client and the other one on the server, to balance the computational load. Each framework is evaluated based on key performance metrics, including model accuracy, communication overhead, and client-side computational load, offering insights into their effectiveness for various federated fine-tuning scenarios. Through this analysis, we identify framework-specific optimization opportunities to enhance the efficiency of FedLLMs and discuss broader research directions, highlighting open opportunities to better adapt FedLLMs for real-world applications. A use case is presented to demonstrate the performance comparison of these three frameworks under varying configurations and settings.
- Abstract(参考訳): Federated Learning(FL)は、分散プライベートデータセットを使用して、トレーニング済みの大規模言語モデル(LLM)を微調整するためのプライバシ保護ソリューションを提供する。
しかし、LLMの広範なパラメータを微調整することは、重要な通信コストと計算コストのために、リソース制約されたフェデレーションシナリオにおいて特に困難である。
本稿では、これらの課題にどのように対処できるかをより深く理解するために、知識蒸留(KD)と分割学習(SL)を統合してこれらの問題を緩和する、先進的な3つのLLM(FedLLM)フレームワークの比較分析を行う。
1) クライアントがモデルパラメータや勾配をアップロードして、簡単で効果的な微調整を可能にするFedLLM。
2)KDを利用するKD-FedLLMsは,ロジットによる効率的な知識共有を実現する。
3) LLM を2つの部分に分割された Split-FedLLM は,一方がクライアント上で,もう一方がサーバ上で実行され,計算負荷のバランスをとる。
各フレームワークは、モデル精度、通信オーバーヘッド、クライアント側の計算負荷など、主要なパフォーマンス指標に基づいて評価され、各種のフェデレートされた微調整シナリオに対するそれらの効果についての洞察を提供する。
この分析により、FedLLMsの効率を高めるためのフレームワーク固有の最適化機会を特定し、より広範な研究方向性について議論し、現実世界のアプリケーションにFedLLMsを適応させるオープンな機会を強調した。
さまざまな設定と設定の下で、これらの3つのフレームワークのパフォーマンス比較を示すユースケースが提示されている。
関連論文リスト
- FedSpaLLM: Federated Pruning of Large Language Models [8.45879077052023]
大規模言語モデル(LLM)は最先端のパフォーマンスを実現するが、高い計算量とストレージ要求のためデプロイは困難である。
我々は,LLMの刈り取り専用に設計された最初のフェデレーション学習フレームワークであるFedSpaLLMを提案する。
論文 参考訳(メタデータ) (2024-10-18T20:33:12Z) - Empirical Insights on Fine-Tuning Large Language Models for Question-Answering [50.12622877002846]
大規模言語モデル(LLM)は、大量のデータセットの事前トレーニングを通じて、広範囲な世界の知識を符号化する。
我々は,事前学習したLLMが記憶する知識の量に基づいて,教師付き微調整(SFT)データを分類した。
実験の結果,SFTの段階では60個のデータポイントが事前学習中に符号化された知識を活性化することができ,LLMがQAタスクを実行できることがわかった。
論文 参考訳(メタデータ) (2024-09-24T07:38:38Z) - The Ultimate Guide to Fine-Tuning LLMs from Basics to Breakthroughs: An Exhaustive Review of Technologies, Research, Best Practices, Applied Research Challenges and Opportunities [0.35998666903987897]
本稿では,Large Language Models (LLM) の微調整について検討する。
従来の自然言語処理(NLP)モデルから、AIにおける彼らの重要な役割まで、LLMの歴史的進化を概説している。
本報告では, 微調整LDMのための構造化7段パイプラインについて紹介する。
論文 参考訳(メタデータ) (2024-08-23T14:48:02Z) - FactorLLM: Factorizing Knowledge via Mixture of Experts for Large Language Models [50.331708897857574]
本稿では,高度に訓練された高密度FFNを余分なサブネットワークに分解する新しいアプローチであるFacterLLMを紹介する。
FactorLLMは、最大85%のモデル性能を確保しながら、推論速度を30%以上増加させながら、ソースモデルに匹敵するパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-08-15T16:45:16Z) - A Practice-Friendly LLM-Enhanced Paradigm with Preference Parsing for Sequential Recommendation [15.153844486572932]
本稿では、シーケンシャルレコメンデータシステム(SRS)のための優先構文解析(P2Rec)を用いた実践的LLM拡張パラダイムを提案する。
具体的には、情報再構成段階において、事前学習したSRSモデルの助けを借りて、協調的な情報注入のための新しいユーザレベルSFTタスクを設計する。
我々のゴールは、LLMが各ユーザのインタラクションシーケンスから対応する優先度分布を再構築することを学ばせることである。
論文 参考訳(メタデータ) (2024-06-01T07:18:56Z) - Unveiling the Impact of Coding Data Instruction Fine-Tuning on Large Language Models Reasoning [64.5243480989869]
コーディングデータは、事前訓練中に推論能力を高めることで知られています。
IFTにおける内的推論能力の活性化におけるその役割はいまだ検討されている。
IFT段階におけるLLMの推論能力に及ぼす符号化データの影響について検討する。
論文 参考訳(メタデータ) (2024-05-30T23:20:25Z) - Efficient and Responsible Adaptation of Large Language Models for Robust Top-k Recommendations [11.004673022505566]
何百万というユーザの長いクエリは、大規模言語モデルのパフォーマンスを低下させ、推奨することができる。
本稿では,大規模言語モデルと従来のレコメンデーションシステムの両方の機能を利用するハイブリッドタスク割り当てフレームワークを提案する。
実世界の3つのデータセットによる結果から,弱い利用者の減少と,サブ人口に対するRSのロバスト性の向上が示唆された。
論文 参考訳(メタデータ) (2024-05-01T19:11:47Z) - Improving Open Information Extraction with Large Language Models: A
Study on Demonstration Uncertainty [52.72790059506241]
オープン情報抽出(OIE)タスクは、構造化されていないテキストから構造化された事実を抽出することを目的としている。
一般的なタスク解決手段としてChatGPTのような大きな言語モデル(LLM)の可能性にもかかわらず、OIEタスクの最先端(教師付き)メソッドは遅れている。
論文 参考訳(メタデータ) (2023-09-07T01:35:24Z) - FederatedScope-LLM: A Comprehensive Package for Fine-tuning Large
Language Models in Federated Learning [70.38817963253034]
本稿では, ファインチューニング LLM のこれらの課題について論じ, 本パッケージ FS-LLM を主な貢献として紹介する。
我々は、FLシナリオにおける将来の拡張のために、包括的フェデレーションパラメータ効率の良い微調整アルゴリズムの実装と汎用プログラミングインタフェースを提供する。
本研究では, FS-LLM の有効性を検証し, FL 設定におけるパラメータ効率の高いパラメータ調整アルゴリズムを用いて, 高度な LLM のベンチマークを行う。
論文 参考訳(メタデータ) (2023-09-01T09:40:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。