論文の概要: A novel Facial Recognition technique with Focusing on Masked Faces
- arxiv url: http://arxiv.org/abs/2501.04444v1
- Date: Wed, 08 Jan 2025 11:53:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-09 14:56:45.589238
- Title: A novel Facial Recognition technique with Focusing on Masked Faces
- Title(参考訳): マスケ顔に焦点をあてた新しい顔認識技術
- Authors: Dana A Abdullah, Dana Rasul Hamad, Hakem Beitollahi, Ismail Y Maolood, Abdulhady Abas Abdullah, Aso Khaleel Ameen,
- Abstract要約: 本研究では,マスクのない顔マッチングモデル(MUFM)を提案する。
このモデルは、視覚幾何学グループ(VGG16)モデルを用いて、重要な顔の特徴を抽出する。
コサイン類似度尺度は、同一人物のマスクとマスクされていない顔を比較するために用いられる。
- 参考スコア(独自算出の注目度): 0.29687381456164
- License:
- Abstract: Recognizing the same faces with and without masks is important for ensuring consistent identification in security, access control, and public safety. This capability is crucial in scenarios like law enforcement, healthcare, and surveillance, where accurate recognition must be maintained despite facial occlusion. This research focuses on the challenge of recognizing the same faces with and without masks by employing cosine similarity as the primary technique. With the increased use of masks, traditional facial recognition systems face significant accuracy issues, making it crucial to develop methods that can reliably identify individuals in masked conditions. For that reason, this study proposed Masked-Unmasked Face Matching Model (MUFM). This model employs transfer learning using the Visual Geometry Group (VGG16) model to extract significant facial features, which are subsequently classified utilizing the K-Nearest Neighbors (K-NN) algorithm. The cosine similarity metric is employed to compare masked and unmasked faces of the same individuals. This approach represents a novel contribution, as the task of recognizing the same individual with and without a mask using cosine similarity has not been previously addressed. By integrating these advanced methodologies, the research demonstrates effective identification of individuals despite the presence of masks, addressing a significant limitation in traditional systems. Using data is another essential part of this work, by collecting and preparing an image dataset from three different sources especially some of those data are real provided a comprehensive power of this research. The image dataset used were already collected in three different datasets of masked and unmasked for the same faces.
- Abstract(参考訳): マスクなしで同じ顔を認識することは、セキュリティ、アクセス制御、公衆安全における一貫した識別を確保するために重要である。
この能力は、顔の隠蔽にもかかわらず正確な認識を維持する必要がある法執行、医療、監視といったシナリオにおいて重要である。
本研究は,コサイン類似性を主手法として用い,マスクの有無で同一の顔を認識することの課題に焦点をあてる。
マスクの使用の増加に伴い、従来の顔認識システムは重要な精度の問題に直面し、マスクされた状態の個人を確実に識別する手法を開発することが重要である。
そこで本研究では,マスク付き顔マッチングモデル(MUFM)を提案する。
このモデルは、視覚幾何学グループ(VGG16)モデルを用いて、重要な顔の特徴を抽出し、K-Nearest Neighbors (K-NN)アルゴリズムを用いて分類する。
コサイン類似度尺度は、同一人物のマスクとマスクされていない顔を比較するために用いられる。
この手法は、コサイン類似性を用いたマスクの有無で同一人物を識別するタスクについて、これまでは言及されていなかったため、新しい貢献を反映している。
これらの高度な方法論を統合することで、マスクの存在にもかかわらず個人を効果的に識別することを示し、従来のシステムにおいて重要な制限に対処する。
データの利用は、3つの異なるソースから画像データセットを収集し、準備することで、この研究の重要な部分である。
使用した画像データセットは、マスクされた3つの異なるデータセットで既に収集され、同じ顔に対してマスクされていない。
関連論文リスト
- Seeing through the Mask: Multi-task Generative Mask Decoupling Face
Recognition [47.248075664420874]
現在の一般的な顔認識システムは、隠蔽シーンに遭遇する際の重大な性能劣化に悩まされている。
本稿では,これら2つのタスクを協調的に扱うために,マルチタスクのgEnerative mask dEcoupling Face Recognition (MEER) ネットワークを提案する。
まず,マスクと識別情報を分離する新しいマスクデカップリングモジュールを提案する。
論文 参考訳(メタデータ) (2023-11-20T03:23:03Z) - Deep Learning based CNN Model for Classification and Detection of
Individuals Wearing Face Mask [0.0]
このプロジェクトでは、ディープラーニングを利用して、リアルタイムストリーミングビデオや画像のフェイスマスクを検出するモデルを作成する。
この研究の主な焦点は、特にセンシティブな領域におけるセキュリティを強化することである。
この研究は、画像前処理、画像トリミング、画像分類の3段階に展開している。
論文 参考訳(メタデータ) (2023-11-17T09:24:04Z) - Diff-Privacy: Diffusion-based Face Privacy Protection [58.1021066224765]
本稿では,Diff-Privacyと呼ばれる拡散モデルに基づく顔のプライバシー保護手法を提案する。
具体的には、提案したマルチスケール画像インバージョンモジュール(MSI)をトレーニングし、元の画像のSDMフォーマット条件付き埋め込みのセットを得る。
本研究は,条件付き埋め込みに基づいて,組込みスケジューリング戦略を設計し,デノナイズプロセス中に異なるエネルギー関数を構築し,匿名化と視覚的アイデンティティ情報隠蔽を実現する。
論文 参考訳(メタデータ) (2023-09-11T09:26:07Z) - MaskMTL: Attribute prediction in masked facial images with deep
multitask learning [9.91045425400833]
本稿では,マスク付き顔画像から多種多様な特徴を共同で推定する深層マルチタスク学習(MTL)手法を提案する。
提案手法は、他の競合技術よりも性能が優れている。
論文 参考訳(メタデータ) (2022-01-09T13:03:29Z) - Mask-invariant Face Recognition through Template-level Knowledge
Distillation [3.727773051465455]
マスクは従来の顔認識システムの性能に影響を与える。
マスク不変顔認識ソリューション(MaskInv)を提案する。
蒸留された知識に加えて、学生ネットワークは、マージンベースのアイデンティティ分類損失による追加ガイダンスの恩恵を受ける。
論文 参考訳(メタデータ) (2021-12-10T16:19:28Z) - MLFW: A Database for Face Recognition on Masked Faces [56.441078419992046]
Masked LFW (MLFW) は、マスクのない顔からマスクされた顔を自動的に生成するツールである。
SOTAモデルの認識精度は、元の画像の精度と比較して、MLFWデータベース上で5%-16%低下する。
論文 参考訳(メタデータ) (2021-09-13T09:30:10Z) - Multi-Dataset Benchmarks for Masked Identification using Contrastive
Representation Learning [0.0]
新型コロナウイルスのパンデミックは世界中で受け入れられた基準を大きく変えた。
パスポート、運転免許証、国籍カードなどの公式文書には、完全な顔画像が登録されている。
空港やセキュリティチェックポイントでは、マスクの取り外しを依頼するのではなく、識別文書の未マスク画像とマスク付き人物とを一致させる方が安全である。
本稿では,マスクとマスクのない顔マッチングに特化した,視覚表現学習に基づく事前学習ワークフローを提案する。
論文 参考訳(メタデータ) (2021-06-10T08:58:10Z) - Contrastive Context-Aware Learning for 3D High-Fidelity Mask Face
Presentation Attack Detection [103.7264459186552]
顔認識システムには、顔提示攻撃検出(PAD)が不可欠である。
ほとんどの既存の3DマスクPADベンチマークにはいくつかの欠点があります。
現実世界のアプリケーションとのギャップを埋めるために、大規模なハイファイアリティマスクデータセットを紹介します。
論文 参考訳(メタデータ) (2021-04-13T12:48:38Z) - Unmasking Face Embeddings by Self-restrained Triplet Loss for Accurate
Masked Face Recognition [6.865656740940772]
マスク付き顔認識性能を改善するためのソリューションを提案する。
具体的には,既存の顔認識モデル上で動作させるEmbedding Unmasking Model (EUM)を提案する。
また、EUMが同一アイデンティティのマスクされていない顔のこれらに類似した埋め込みを作成することを可能にする新しい損失関数、自己拘束トリプルト(SRT)を提案します。
論文 参考訳(メタデータ) (2021-03-02T13:43:11Z) - Towards Face Encryption by Generating Adversarial Identity Masks [53.82211571716117]
敵の識別マスクを生成するためのターゲットID保護反復法(TIP-IM)を提案する。
TIP-IMは、様々な最先端の顔認識モデルに対して95%以上の保護成功率を提供する。
論文 参考訳(メタデータ) (2020-03-15T12:45:10Z) - Investigating the Impact of Inclusion in Face Recognition Training Data
on Individual Face Identification [93.5538147928669]
最新のオープンソースの顔認識システムであるArcFaceを、100万枚以上の散らばった画像を用いた大規模な顔識別実験で監査する。
モデルのトレーニングデータには79.71%、存在しない人には75.73%のランク1顔認証精度がある。
論文 参考訳(メタデータ) (2020-01-09T15:50:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。