論文の概要: Gradient Purification: Defense Against Poisoning Attack in Decentralized Federated Learning
- arxiv url: http://arxiv.org/abs/2501.04453v3
- Date: Mon, 07 Jul 2025 11:54:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-08 15:46:34.186468
- Title: Gradient Purification: Defense Against Poisoning Attack in Decentralized Federated Learning
- Title(参考訳): グラディエント・パーフィケーション:分散的フェデレーション・ラーニングにおける攻撃に対する防御
- Authors: Bin Li, Xiaoye Miao, Yan Zhang, Jianwei Yin,
- Abstract要約: 本稿では,DFLにおけるデータ中毒対策として,GPDと呼ばれる新しい勾配浄化防御法を提案する。
グラデーションの害を個別に軽減し、モデルの重みに埋め込まれた利益を維持することを目的としている。
また、モデル精度の点で最先端の防御手法を著しく上回っている。
- 参考スコア(独自算出の注目度): 21.99122382358776
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Decentralized federated learning (DFL) is inherently vulnerable to data poisoning attacks, as malicious clients can transmit manipulated gradients to neighboring clients. Existing defense methods either reject suspicious gradients per iteration or restart DFL aggregation after excluding all malicious clients. They all neglect the potential benefits that may exist within contributions from malicious clients. In this paper, we propose a novel gradient purification defense, termed GPD, to defend against data poisoning attacks in DFL. It aims to separately mitigate the harm in gradients and retain benefits embedded in model weights, thereby enhancing overall model accuracy. For each benign client in GPD, a recording variable is designed to track historically aggregated gradients from one of its neighbors. It allows benign clients to precisely detect malicious neighbors and mitigate all aggregated malicious gradients at once. Upon mitigation, benign clients optimize model weights using purified gradients. This optimization not only retains previously beneficial components from malicious clients but also exploits canonical contributions from benign clients. We analyze the convergence of GPD, as well as its ability to harvest high accuracy. Extensive experiments demonstrate that, GPD is capable of mitigating data poisoning attacks under both iid and non-iid data distributions. It also significantly outperforms state-of-the-art defense methods in terms of model accuracy.
- Abstract(参考訳): 分散連合学習(DFL)は、悪質なクライアントが隣のクライアントに操作された勾配を送信できるため、データ中毒攻撃に本質的に脆弱である。
既存の防御方法は、繰り返しごとに不審な勾配を拒否するか、悪意のあるクライアントをすべて排除した後でDFLアグリゲーションを再起動するかのいずれかである。
彼らはすべて、悪意のあるクライアントからのコントリビューションの中に存在する潜在的なメリットを無視しています。
本稿では, DFLにおけるデータ中毒対策として, GPD と呼ばれる新しい勾配浄化防御法を提案する。
これは、勾配の害を個別に軽減し、モデルの重みに埋め込まれた利益を維持し、全体的なモデルの精度を高めることを目的としている。
GPDの各良性クライアントに対して、記録変数は、その隣人から歴史的に集約された勾配を追跡するように設計されている。
良心的なクライアントは、悪意のある隣人を正確に検出し、すべての集約された悪意のある勾配を同時に緩和することができる。
緩和の際、良性クライアントは純度勾配を用いてモデルウェイトを最適化する。
この最適化は、悪意のあるクライアントから以前有益なコンポーネントを保持するだけでなく、良心的なクライアントからの標準的コントリビューションも活用する。
我々は,GPDの収束度と高精度な収穫能力を分析した。
大規模な実験により、GPDはiidデータと非idデータの両方でデータ中毒攻撃を緩和できることが示された。
また、モデル精度の点で最先端の防御手法を著しく上回っている。
関連論文リスト
- SMTFL: Secure Model Training to Untrusted Participants in Federated Learning [8.225656436115509]
フェデレートラーニング(Federated Learning)は、分散モデルトレーニングのテクニックである。
勾配反転攻撃と中毒攻撃は、トレーニングデータのプライバシーとモデルの正しさに重大なリスクをもたらす。
我々は,信頼された参加者に頼らずに,フェデレート学習における安全なモデルトレーニングを実現するための,SMTFLと呼ばれる新しいアプローチを提案する。
論文 参考訳(メタデータ) (2025-02-04T06:12:43Z) - CENSOR: Defense Against Gradient Inversion via Orthogonal Subspace Bayesian Sampling [63.07948989346385]
フェデレーション学習は、グローバルサーバ上でニューラルネットワークを協調的にトレーニングする。
各ローカルクライアントは、現在のグローバルモデルウェイトを受信し、そのローカルプライベートデータに基づいてパラメータ更新(グラディエント)を返送する。
既存の勾配反転攻撃は、クライアントの勾配ベクトルからプライベートトレーニングインスタンスを復元するためにこの脆弱性を利用することができる。
本稿では,大規模ニューラルネットワークモデルに適した新しい防衛手法を提案する。
論文 参考訳(メタデータ) (2025-01-27T01:06:23Z) - RECESS Vaccine for Federated Learning: Proactive Defense Against Model Poisoning Attacks [20.55681622921858]
モデル中毒は、フェデレートラーニング(FL)の適用を著しく阻害する
本研究では,モデル中毒に対するRECESSという新しいプロアクティブ・ディフェンスを提案する。
各イテレーションをスコアする従来の方法とは異なり、RECESSはクライアントのパフォーマンス相関を複数のイテレーションで考慮し、信頼スコアを見積もる。
論文 参考訳(メタデータ) (2023-10-09T06:09:01Z) - Client-side Gradient Inversion Against Federated Learning from Poisoning [59.74484221875662]
フェデレートラーニング(FL)により、分散参加者は、データを中央サーバに直接共有することなく、グローバルモデルをトレーニングできる。
近年の研究では、FLは元のトレーニングサンプルの再構築を目的とした勾配反転攻撃(GIA)に弱いことが判明している。
本稿では,クライアント側から起動可能な新たな攻撃手法であるクライアント側中毒性グレーディエント・インバージョン(CGI)を提案する。
論文 参考訳(メタデータ) (2023-09-14T03:48:27Z) - G$^2$uardFL: Safeguarding Federated Learning Against Backdoor Attacks
through Attributed Client Graph Clustering [116.4277292854053]
Federated Learning (FL)は、データ共有なしで協調的なモデルトレーニングを提供する。
FLはバックドア攻撃に弱いため、有害なモデル重みがシステムの整合性を損なう。
本稿では、悪意のあるクライアントの識別を属性グラフクラスタリング問題として再解釈する保護フレームワークであるG$2$uardFLを提案する。
論文 参考訳(メタデータ) (2023-06-08T07:15:04Z) - Diffusion-Based Adversarial Sample Generation for Improved Stealthiness
and Controllability [62.105715985563656]
そこで本研究では,現実的な対向サンプルを生成するための拡散型射影勾配 Descent (Diff-PGD) という新しいフレームワークを提案する。
我々のフレームワークは、デジタルアタック、物理世界アタック、スタイルベースのアタックなど、特定のタスクに簡単にカスタマイズできる。
論文 参考訳(メタデータ) (2023-05-25T21:51:23Z) - Detection and Prevention Against Poisoning Attacks in Federated Learning [0.0]
本稿では,様々な種類の毒殺を検知し,予防するための新しいアプローチを提案し,検討する。
各クライアントの精度をすべてのクライアントの平均精度と比較することにより、AADDはクライアントを精度差で検出する。
提案手法は, 有毒なクライアントを検知し, グローバルモデルの精度を劣化させないための有望な結果を示す。
論文 参考訳(メタデータ) (2022-10-24T11:28:01Z) - FLIP: A Provable Defense Framework for Backdoor Mitigation in Federated
Learning [66.56240101249803]
我々は,クライアントの強固化がグローバルモデル(および悪意のあるクライアント)に与える影響について検討する。
本稿では, 逆エンジニアリングによる防御手法を提案するとともに, 堅牢性を保証して, 改良を実現できることを示す。
競合する8つのSOTA防御法について, 単発および連続のFLバックドア攻撃に対して, 提案手法の実証的優位性を示した。
論文 参考訳(メタデータ) (2022-10-23T22:24:03Z) - CrowdGuard: Federated Backdoor Detection in Federated Learning [39.58317527488534]
本稿では,フェデレートラーニングにおけるバックドア攻撃を効果的に軽減する新しい防御機構であるCrowdGuardを提案する。
CrowdGuardでは、サーバロケーションのスタック化されたクラスタリングスキームを使用して、クライアントからのフィードバックに対するレジリエンスを高めている。
評価結果は、CrowdGuardがさまざまなシナリオで100%正の正の正の正の負の負の負の値を達成することを示す。
論文 参考訳(メタデータ) (2022-10-14T11:27:49Z) - BEAS: Blockchain Enabled Asynchronous & Secure Federated Machine
Learning [0.0]
我々は、N-party Federated Learningのための最初のブロックチェーンベースのフレームワークBEASを紹介する。
グラデーションプルーニングを使用したトレーニングデータの厳格なプライバシー保証を提供する。
異常検出プロトコルは、データ汚染攻撃のリスクを最小限に抑えるために使用される。
また、異種学習環境における早期収束を防止するための新しいプロトコルも定義する。
論文 参考訳(メタデータ) (2022-02-06T17:11:14Z) - Improved Certified Defenses against Data Poisoning with (Deterministic)
Finite Aggregation [122.83280749890078]
本報告では, 一般中毒に対する予防的対策として, フィニット・アグリゲーション(Finite Aggregation)を提案する。
トレーニングセットを直接非結合部分集合に分割するDPAとは対照的に、我々の方法はまず、トレーニングセットをより小さな非結合部分集合に分割する。
我々は、決定論的および集約的認証された防御設計をブリッジして、我々の方法の代替的な見解を提供する。
論文 参考訳(メタデータ) (2022-02-05T20:08:58Z) - Byzantine-robust Federated Learning through Collaborative Malicious
Gradient Filtering [32.904425716385575]
勾配ベクトルの要素ワイドサインは, モデル中毒攻撃の検出に有用であることを示す。
そこで本稿では,Byzantine-robust フェデレーション学習を有害な勾配フィルタリングによって実現するための textitSignGuard という新しい手法を提案する。
論文 参考訳(メタデータ) (2021-09-13T11:15:15Z) - How Robust are Randomized Smoothing based Defenses to Data Poisoning? [66.80663779176979]
我々は、トレーニングデータの品質の重要性を強調する堅牢な機械学習モデルに対して、これまで認識されていなかった脅威を提示します。
本稿では,二段階最適化に基づく新たなデータ中毒攻撃法を提案し,ロバストな分類器のロバスト性を保証する。
我々の攻撃は、被害者が最先端のロバストな訓練方法を用いて、ゼロからモデルを訓練しても効果的である。
論文 参考訳(メタデータ) (2020-12-02T15:30:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。