Hybrid Artificial Intelligence Strategies for Drone Navigation
- URL: http://arxiv.org/abs/2501.04472v1
- Date: Wed, 08 Jan 2025 12:51:34 GMT
- Title: Hybrid Artificial Intelligence Strategies for Drone Navigation
- Authors: Rubén San-Segundo, Lucía Angulo, Manuel Gil-Martín, David Carramiñana, Ana M. Bernardos,
- Abstract summary: This paper describes the development of hybrid artificial intelligence strategies for drone navigation.
The navigation module combines a deep learning model with a rule-based engine depending on the agent state.
- Score: 0.6804079979762628
- License:
- Abstract: Objective: This paper describes the development of hybrid artificial intelligence strategies for drone navigation. Methods: The navigation module combines a deep learning model with a rule-based engine depending on the agent state. The deep learning model has been trained using reinforcement learning. The rule-based engine uses expert knowledge to deal with specific situations. The navigation module incorporates several strategies to explain the drone decision based on its observation space, and different mechanisms for including human decisions in the navigation process. Finally, this paper proposes an evaluation methodology based on defining several scenarios and analyzing the performance of the different strategies according to metrics adapted to each scenario. Results: Two main navigation problems have been studied. For the first scenario (reaching known targets), it has been possible to obtain a 90% task completion rate, reducing significantly the number of collisions thanks to the rule-based engine. For the second scenario, it has been possible to reduce 20% of the time required to locate all the targets using the reinforcement learning model. Conclusions: Reinforcement learning is a very good strategy to learn policies for drone navigation, but in critical situations, it is necessary to complement it with a rule-based module to increase task success rate.
Related papers
- NavCoT: Boosting LLM-Based Vision-and-Language Navigation via Learning
Disentangled Reasoning [101.56342075720588]
Vision-and-Language Navigation (VLN), as a crucial research problem of Embodied AI, requires an embodied agent to navigate through complex 3D environments following natural language instructions.
Recent research has highlighted the promising capacity of large language models (LLMs) in VLN by improving navigational reasoning accuracy and interpretability.
This paper introduces a novel strategy called Navigational Chain-of-Thought (NavCoT), where we fulfill parameter-efficient in-domain training to enable self-guided navigational decision.
arXiv Detail & Related papers (2024-03-12T07:27:02Z) - NoMaD: Goal Masked Diffusion Policies for Navigation and Exploration [57.15811390835294]
This paper describes how we can train a single unified diffusion policy to handle both goal-directed navigation and goal-agnostic exploration.
We show that this unified policy results in better overall performance when navigating to visually indicated goals in novel environments.
Our experiments, conducted on a real-world mobile robot platform, show effective navigation in unseen environments in comparison with five alternative methods.
arXiv Detail & Related papers (2023-10-11T21:07:14Z) - Robot path planning using deep reinforcement learning [0.0]
Reinforcement learning methods offer an alternative to map-free navigation tasks.
Deep reinforcement learning agents are implemented for both the obstacle avoidance and the goal-oriented navigation task.
An analysis of the changes in the behaviour and performance of the agents caused by modifications in the reward function is conducted.
arXiv Detail & Related papers (2023-02-17T20:08:59Z) - Holistic Deep-Reinforcement-Learning-based Training of Autonomous
Navigation Systems [4.409836695738518]
Deep Reinforcement Learning emerged as a promising approach for autonomous navigation of ground vehicles.
In this paper, we propose a holistic Deep Reinforcement Learning training approach involving all entities of the navigation stack.
arXiv Detail & Related papers (2023-02-06T16:52:15Z) - Navigating to Objects in the Real World [76.1517654037993]
We present a large-scale empirical study of semantic visual navigation methods comparing methods from classical, modular, and end-to-end learning approaches.
We find that modular learning works well in the real world, attaining a 90% success rate.
In contrast, end-to-end learning does not, dropping from 77% simulation to 23% real-world success rate due to a large image domain gap between simulation and reality.
arXiv Detail & Related papers (2022-12-02T01:10:47Z) - Benchmarking Reinforcement Learning Techniques for Autonomous Navigation [41.1337061798188]
Deep reinforcement learning (RL) has brought many successes for autonomous robot navigation.
There still exists important limitations that prevent real-world use of RL-based navigation systems.
arXiv Detail & Related papers (2022-10-10T16:53:42Z) - Multi-Robot Deep Reinforcement Learning for Mobile Navigation [82.62621210336881]
We propose a deep reinforcement learning algorithm with hierarchically integrated models (HInt)
At training time, HInt learns separate perception and dynamics models, and at test time, HInt integrates the two models in a hierarchical manner and plans actions with the integrated model.
Our mobile navigation experiments show that HInt outperforms conventional hierarchical policies and single-source approaches.
arXiv Detail & Related papers (2021-06-24T19:07:40Z) - XAI-N: Sensor-based Robot Navigation using Expert Policies and Decision
Trees [55.9643422180256]
We present a novel sensor-based learning navigation algorithm to compute a collision-free trajectory for a robot in dense and dynamic environments.
Our approach uses deep reinforcement learning-based expert policy that is trained using a sim2real paradigm.
We highlight the benefits of our algorithm in simulated environments and navigating a Clearpath Jackal robot among moving pedestrians.
arXiv Detail & Related papers (2021-04-22T01:33:10Z) - Using Deep Reinforcement Learning Methods for Autonomous Vessels in 2D
Environments [11.657524999491029]
In this work, we used deep reinforcement learning combining Q-learning with a neural representation to avoid instability.
Our methodology uses deep q-learning and combines it with a rolling wave planning approach on agile methodology.
Experimental results show that the proposed method enhanced the performance of VVN by 55.31 on average for long-distance missions.
arXiv Detail & Related papers (2020-03-23T12:58:58Z) - Enhanced Adversarial Strategically-Timed Attacks against Deep
Reinforcement Learning [91.13113161754022]
We introduce timing-based adversarial strategies against a DRL-based navigation system by jamming in physical noise patterns on the selected time frames.
Our experimental results show that the adversarial timing attacks can lead to a significant performance drop.
arXiv Detail & Related papers (2020-02-20T21:39:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.