Local vs non-local dynamics in cavity-coupled Rydberg atom arrays
- URL: http://arxiv.org/abs/2501.04634v2
- Date: Tue, 29 Apr 2025 09:39:43 GMT
- Title: Local vs non-local dynamics in cavity-coupled Rydberg atom arrays
- Authors: Zeno Bacciconi, Hernan B. Xavier, Matteo Marinelli, Devendra Singh Bhakuni, Marcello Dalmonte,
- Abstract summary: Locality is aumming principle that governs quantum dynamics of many-body systems.<n>Here, we investigate the real-time dynamics of low-energy excitations in one dimensional Rydberg atom arrays coupled to a global cavity mode.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Locality is a transversal principle that governs quantum dynamics of many-body systems. However, for cavity embedded systems, such fundamental notion is hindered by the presence of non-local cavity modes, leaving space for new possible dynamical behaviors. Here, we investigate the real-time dynamics of low-energy excitations in one dimensional Rydberg atom arrays coupled to a global cavity mode. We derive an effective description in terms of a Tavis-Cummings-Ising model, whose phase diagram features ordered and disordered phases. The non-local nature of the cavity mode drastically affects the emergent meson and string dynamics. Mesons hybridize coherently with the cavity photons, leading to composite meson-polaritons excitations. Strings, differently from local interacting theories, acquire a finite kinetic energy thanks to non-local cavity-mediated interactions between the underlying domain-walls. We then conclude by presenting a new concrete experimental blueprint for a cavity QED Rydberg atom array simulator where the physics outlined in this work can be realized.
Related papers
- Correlated relaxation and emerging entanglement in arrays of $Λ$-type atoms [83.88591755871734]
We show that the atomic entanglement emerges in the course of relaxation and persists in the final steady state of the system.
Our findings open a new way to engineer dissipation-induced entanglement.
arXiv Detail & Related papers (2024-11-11T08:39:32Z) - Observation of string breaking on a (2 + 1)D Rydberg quantum simulator [59.63568901264298]
We report the observation of string breaking in synthetic quantum matter using a programmable quantum simulator.
Our work paves a way to explore phenomena in high-energy physics using programmable quantum simulators.
arXiv Detail & Related papers (2024-10-21T22:33:16Z) - Dynamical phases of a BEC in a bad optical cavity at optomechanical resonance [0.0]
We study the emergence of dynamical phases of a Bose-Einstein condensate that is optomechanically coupled to a dissipative cavity mode.
We derive an effective model for the atomic motion, where the cavity degrees of freedom are eliminated.
We show that such limit cycle solutions are metastable configurations of the adiabatic model.
arXiv Detail & Related papers (2024-08-05T14:01:13Z) - Nonlinearity-induced dynamical self-organized twisted-bilayer lattices in Bose-Einstein condensates [26.52467042417047]
We propose a new scheme to realize a nonlinearity-induced dynamical self-organized twisted-bilayer lattice in an atomic Bose-Einstein condensate (BEC)
The key idea here is to utilize the nonlinear effect from the intrinsic atomic interactions to couple different layers and induce a dynamical self-organized supercell structure.
One of the interesting moir'e phenomena, i.e., the flat-band physics, is shown through investigating the dynamics of the wave packet of BEC.
arXiv Detail & Related papers (2024-07-31T09:25:39Z) - Dynamics of a Generalized Dicke Model for Spin-1 Atoms [0.0]
The Dicke model is a staple of theoretical cavity Quantum Electrodynamics (cavity QED)
It demonstrates a rich variety of dynamics such as phase transitions, phase multistability, and chaos.
The varied and complex behaviours admitted by the model highlights the need to more rigorously map its dynamics.
arXiv Detail & Related papers (2024-03-04T04:09:35Z) - Quantized Thouless pumps protected by interactions in dimerized Rydberg tweezer arrays [41.94295877935867]
In the noninteracting case, quantized Thouless pumps can only occur when a topological singularity is encircled adiabatically.
In the presence of interactions, such topological transport can even persist for exotic paths in which the system gets arbitrarily close to the noninteracting singularity.
arXiv Detail & Related papers (2024-02-14T16:58:21Z) - Quench dynamics in higher-dimensional Holstein models: Insights from Truncated Wigner Approaches [41.94295877935867]
We study the melting of charge-density waves in a Holstein model after a sudden switch-on of the electronic hopping.
A comparison with exact data obtained for a Holstein chain shows that a semiclassical treatment of both the electrons and phonons is required in order to correctly describe the phononic dynamics.
arXiv Detail & Related papers (2023-12-19T16:14:01Z) - Dynamical Spectral Response of Fractonic Quantum Matter [0.0]
We study the low-energy excitations of a constrained Bose-Hubbard model in one dimension.
We show the existence of gapped excitations compatible with strong coupling results.
arXiv Detail & Related papers (2023-10-24T18:00:01Z) - Dynamics of inhomogeneous spin ensembles with all-to-all interactions:
breaking permutational invariance [49.1574468325115]
We investigate the consequences of introducing non-uniform initial conditions in the dynamics of spin ensembles characterized by all-to-all interactions.
We find that the dynamics of the spin ensemble now spans a more expansive effective Hilbert space.
arXiv Detail & Related papers (2023-09-19T16:44:14Z) - Higher-order topological Peierls insulator in a two-dimensional
atom-cavity system [58.720142291102135]
We show how photon-mediated interactions give rise to a plaquette-ordered bond pattern in the atomic ground state.
The pattern opens a non-trivial topological gap in 2D, resulting in a higher-order topological phase hosting corner states.
Our work shows how atomic quantum simulators can be harnessed to investigate novel strongly-correlated topological phenomena.
arXiv Detail & Related papers (2023-05-05T10:25:14Z) - Halide perovskite artificial solids as a new platform to simulate
collective phenomena in doped Mott insulators [43.55994393060723]
We introduce artificial lattices made of lead halide perovskite nanocubes as a new platform to simulate and investigate the physics of correlated quantum materials.
We show that, at large photo-doping, the exciton gas undergoes an excitonic Mott transition, which fully realizes the magnetic-field-driven insulator-to-metal transition described by the Hubbard model.
Our results demonstrate that time-resolved experiments span a parameter region of the Hubbard model in which long-range and phase-coherent orders emerge out of a doped Mott insulating phase.
arXiv Detail & Related papers (2023-03-15T17:38:51Z) - Collective atom-cavity coupling and non-linear dynamics with atoms with
multilevel ground states [0.0]
We investigate experimentally and theoretically the collective coupling between atoms with multilevel ground state manifold and an optical cavity mode.
Our results show that the multilevel structure of electronic ground states can significantly alter the relaxation behavior in atom-cavity settings.
arXiv Detail & Related papers (2022-10-12T11:03:04Z) - Radiative Properties of an Artificial Atom coupled to a Josephson
Junction Array [0.0]
We study the radiative properties of an artificial atom coupled to a multimode cavity formed by an array of Josephson junctions.
Introducing a tunable coupling element between the atom and the array, we demonstrate that such a system can exhibit a crossover from a perturbative to non-perturbative regime of light-matter interaction.
arXiv Detail & Related papers (2022-05-27T17:40:37Z) - Quantum critical behavior of entanglement in lattice bosons with
cavity-mediated long-range interactions [0.0]
We analyze the ground-state entanglement entropy of the extended Bose-Hubbard model with infinite-range interactions.
This model describes the low-energy dynamics of ultracold bosons tightly bound to an optical lattice and dispersively coupled to a cavity mode.
arXiv Detail & Related papers (2022-04-16T04:10:57Z) - Bloch-Landau-Zener dynamics induced by a synthetic field in a photonic
quantum walk [52.77024349608834]
We realize a photonic quantum walk in the presence of a synthetic gauge field.
We investigate intriguing system dynamics characterized by the interplay between Bloch oscillations and Landau-Zener transitions.
arXiv Detail & Related papers (2020-11-11T16:35:41Z) - Self-organized topological insulator due to cavity-mediated correlated
tunneling [0.0]
We discuss a model where topology emerges from the quantum interference between single-particle dynamics and global interactions.
The onset of quantum interference leads to spontaneous breaking of the lattice translational symmetry.
The emerging quantum phase is a topological insulator and is found at half fillings.
arXiv Detail & Related papers (2020-11-03T13:23:06Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z) - Dynamical solitons and boson fractionalization in cold-atom topological
insulators [110.83289076967895]
We study the $mathbbZ$ Bose-Hubbard model at incommensurate densities.
We show how defects in the $mathbbZ$ field can appear in the ground state, connecting different sectors.
Using a pumping argument, we show that it survives also for finite interactions.
arXiv Detail & Related papers (2020-03-24T17:31:34Z) - Exploring dynamical phase transitions with cold atoms in an optical
cavity [0.0]
We use an ensemble of about a million strontium-88 atoms in an optical cavity to simulate a collective Lipkin-Meshkov-Glick model.
Our system allows us to probe the dependence of dynamical phase transitions on system size, initial state and other parameters.
arXiv Detail & Related papers (2019-10-01T14:25:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.