A Statistical Theory of Contrastive Pre-training and Multimodal Generative AI
- URL: http://arxiv.org/abs/2501.04641v1
- Date: Wed, 08 Jan 2025 17:47:06 GMT
- Title: A Statistical Theory of Contrastive Pre-training and Multimodal Generative AI
- Authors: Kazusato Oko, Licong Lin, Yuhang Cai, Song Mei,
- Abstract summary: Multi-modal generative AI systems rely on contrastive pre-training to learn representations across different modalities.<n>This paper develops a theoretical framework to explain the success of contrastive pre-training in downstream tasks.
- Score: 18.974297347310287
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Multi-modal generative AI systems, such as those combining vision and language, rely on contrastive pre-training to learn representations across different modalities. While their practical benefits are widely acknowledged, a rigorous theoretical understanding of the contrastive pre-training framework remains limited. This paper develops a theoretical framework to explain the success of contrastive pre-training in downstream tasks, such as zero-shot classification, conditional diffusion models, and vision-language models. We introduce the concept of approximate sufficient statistics, a generalization of the classical sufficient statistics, and show that near-minimizers of the contrastive pre-training loss are approximately sufficient, making them adaptable to diverse downstream tasks. We further propose the Joint Generative Hierarchical Model for the joint distribution of images and text, showing that transformers can efficiently approximate relevant functions within this model via belief propagation. Building on this framework, we derive sample complexity guarantees for multi-modal learning based on contrastive pre-trained representations. Numerical simulations validate these theoretical findings, demonstrating the strong generalization performance of contrastively pre-trained transformers in various multi-modal tasks.
Related papers
- Platonic Grounding for Efficient Multimodal Language Models [22.715168904364756]
We motivate and propose a simple modification to existing multimodal frameworks that rely on aligning pretrained models.
Our work also has implications for combining pretrained models into larger systems efficiently.
arXiv Detail & Related papers (2025-04-27T18:56:26Z) - A Statistical Theory of Contrastive Learning via Approximate Sufficient Statistics [19.24473530318175]
We develop a new theoretical framework for analyzing data augmentation-based contrastive learning.
We show that minimizing SimCLR and other contrastive losses yields encoders that are approximately sufficient.
arXiv Detail & Related papers (2025-03-21T21:07:18Z) - Generative Modeling of Class Probability for Multi-Modal Representation Learning [7.5696616045063845]
Multi-modal understanding plays a crucial role in artificial intelligence by enabling models to jointly interpret inputs from different modalities.
We propose a novel class anchor alignment approach that leverages class probability distributions for multi-modal representation learning.
Our method, Class-anchor-ALigned generative Modeling (CALM), encodes class anchors as prompts to generate and align class probability distributions for each modality.
arXiv Detail & Related papers (2025-03-21T01:17:44Z) - Will Pre-Training Ever End? A First Step Toward Next-Generation Foundation MLLMs via Self-Improving Systematic Cognition [86.21199607040147]
Self-Improving cognition (SIcog) is a self-learning framework for constructing next-generation foundation language models.
We introduce Chain-of-Description, a step-by-step visual understanding method, and integrate structured chain-of-thought (CoT) reasoning to support in-depth multimodal reasoning.
Extensive experiments demonstrate that SIcog produces next-generation foundation MLLMs with substantially improved multimodal cognition.
arXiv Detail & Related papers (2025-03-16T00:25:13Z) - On the Comparison between Multi-modal and Single-modal Contrastive Learning [50.74988548106031]
We introduce a theoretical foundation for understanding the differences between multi-modal and single-modal contrastive learning.
We identify the critical factor, which is the signal-to-noise ratio (SNR), that impacts the generalizability in downstream tasks of both multi-modal and single-modal contrastive learning.
Our analysis provides a unified framework that can characterize the optimization and generalization of both single-modal and multi-modal contrastive learning.
arXiv Detail & Related papers (2024-11-05T06:21:17Z) - Weighted Point Cloud Embedding for Multimodal Contrastive Learning Toward Optimal Similarity Metric [44.95433989446052]
We show the benefit of our proposed method through a new understanding of the contrastive loss of CLIP.
We show that our proposed similarity based on weighted point clouds consistently achieves the optimal similarity.
arXiv Detail & Related papers (2024-04-30T03:15:04Z) - Concept Learning for Interpretable Multi-Agent Reinforcement Learning [5.179808182296037]
We introduce a method for incorporating interpretable concepts from a domain expert into models trained through multi-agent reinforcement learning.
This allows an expert to both reason about the resulting concept policy models in terms of these high-level concepts at run-time, as well as intervene and correct mispredictions to improve performance.
We show that this yields improved interpretability and training stability, with benefits to policy performance and sample efficiency in a simulated and real-world cooperative-competitive multi-agent game.
arXiv Detail & Related papers (2023-02-23T18:53:09Z) - Synergies between Disentanglement and Sparsity: Generalization and
Identifiability in Multi-Task Learning [79.83792914684985]
We prove a new identifiability result that provides conditions under which maximally sparse base-predictors yield disentangled representations.
Motivated by this theoretical result, we propose a practical approach to learn disentangled representations based on a sparsity-promoting bi-level optimization problem.
arXiv Detail & Related papers (2022-11-26T21:02:09Z) - Towards All-in-one Pre-training via Maximizing Multi-modal Mutual
Information [77.80071279597665]
We propose an all-in-one single-stage pre-training approach, named Maximizing Multi-modal Mutual Information Pre-training (M3I Pre-training)
Our approach achieves better performance than previous pre-training methods on various vision benchmarks, including ImageNet classification, object detection, LVIS long-tailed object detection, and ADE20k semantic segmentation.
arXiv Detail & Related papers (2022-11-17T18:59:49Z) - Contrastive Learning for Fair Representations [50.95604482330149]
Trained classification models can unintentionally lead to biased representations and predictions.
Existing debiasing methods for classification models, such as adversarial training, are often expensive to train and difficult to optimise.
We propose a method for mitigating bias by incorporating contrastive learning, in which instances sharing the same class label are encouraged to have similar representations.
arXiv Detail & Related papers (2021-09-22T10:47:51Z) - Video Prediction via Example Guidance [156.08546987158616]
In video prediction tasks, one major challenge is to capture the multi-modal nature of future contents and dynamics.
In this work, we propose a simple yet effective framework that can efficiently predict plausible future states.
arXiv Detail & Related papers (2020-07-03T14:57:24Z) - Learning Diverse Representations for Fast Adaptation to Distribution
Shift [78.83747601814669]
We present a method for learning multiple models, incorporating an objective that pressures each to learn a distinct way to solve the task.
We demonstrate our framework's ability to facilitate rapid adaptation to distribution shift.
arXiv Detail & Related papers (2020-06-12T12:23:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.