論文の概要: Exploring nontrivial topology at quantum criticality in a superconducting processor
- arxiv url: http://arxiv.org/abs/2501.04679v1
- Date: Wed, 08 Jan 2025 18:39:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-09 14:55:01.760659
- Title: Exploring nontrivial topology at quantum criticality in a superconducting processor
- Title(参考訳): 超伝導プロセッサにおける量子臨界点における非自明なトポロジーの探索
- Authors: Ziqi Tan, Ke Wang, Sheng Yang, Fanhao Shen, Feitong Jin, Xuhao Zhu, Yujie Ji, Shibo Xu, Jiachen Chen, Yaozu Wu, Chuanyu Zhang, Yu Gao, Ning Wang, Yiren Zou, Aosai Zhang, Tingting Li, Zehang Bao, Zitian Zhu, Jiarun Zhong, Zhengyi Cui, Yihang Han, Yiyang He, Han Wang, Jianan Yang, Yanzhe Wang, Jiayuan Shen, Gongyu Liu, Zixuan Song, Jinfeng Deng, Hang Dong, Pengfei Zhang, Shao-Kai Jian, Hekang Li, Zhen Wang, Qiujiang Guo, Chao Song, Xue-Jia Yu, H. Wang, Hai-Qing Lin, Fei Wu,
- Abstract要約: 超伝導プロセッサ上に100ドル相当の量子ビットを持つ低レベル臨界状態を作成することにより、臨界クラスターIsingモデルを実験的に探索する。
低エネルギー状態に基づいて境界$g$-関数を探索する効率的な手法を開発し,検討中の臨界系の非自明な位相を一意に同定する。
本研究は, トポロジと量子臨界の相互作用を研究する上で有用な量子資源として, 低層臨界状態を示すものである。
- 参考スコア(独自算出の注目度): 23.278631632470628
- License:
- Abstract: The discovery of nontrivial topology in quantum critical states has introduced a new paradigm for classifying quantum phase transitions and challenges the conventional belief that topological phases are typically associated with a bulk energy gap. However, realizing and characterizing such topologically nontrivial quantum critical states with large particle numbers remains an outstanding experimental challenge in statistical and condensed matter physics. Programmable quantum processors can directly prepare and manipulate exotic quantum many-body states, offering a powerful path for exploring the physics behind these states. Here, we present an experimental exploration of the critical cluster Ising model by preparing its low-lying critical states on a superconducting processor with up to $100$ qubits. We develop an efficient method to probe the boundary $g$-function based on prepared low-energy states, which allows us to uniquely identify the nontrivial topology of the critical systems under study. Furthermore, by adapting the entanglement Hamiltonian tomography technique, we recognize two-fold topological degeneracy in the entanglement spectrum under periodic boundary condition, experimentally verifying the universal bulk-boundary correspondence in topological critical systems. Our results demonstrate the low-lying critical states as useful quantum resources for investigating the interplay between topology and quantum criticality.
- Abstract(参考訳): 量子臨界状態における非自明なトポロジーの発見は、量子相転移を分類するための新しいパラダイムを導入し、トポロジー位相が通常バルクエネルギーギャップと関連しているという従来の信念に挑戦した。
しかし、そのような位相的に非自明な量子臨界状態を大きな粒子数で実現し、特徴づけることは、統計学的および凝縮物質物理学において顕著な実験的課題である。
プログラム可能な量子プロセッサは、エキゾチックな量子多体状態を直接準備し、操作することができ、これらの状態の背後にある物理を探索するための強力な経路を提供する。
ここでは,超伝導プロセッサ上に最大100ドルキュービットの低レベル臨界状態を作成することにより,臨界クラスターIsingモデルを実験的に検討する。
低エネルギー状態に基づいて境界$g$-関数を探索する効率的な手法を開発し,検討中の臨界系の非自明な位相を一意に同定する。
さらに, エンタングルメント・ハミルトントモグラフィー法の適用により, 周期的境界条件下でのエンタングルメントスペクトルの2倍のトポロジ的縮退を認め, トポロジ的臨界系の普遍的バルク境界対応を実験的に検証した。
本研究は, トポロジと量子臨界の相互作用を研究する上で有用な量子資源として, 低層臨界状態を示すものである。
関連論文リスト
- Unsupervised Quantum Anomaly Detection on Noisy Quantum Processors [1.2325897339438878]
本稿では,一クラス支援ベクトルマシン(OCSVM)アルゴリズムの一般化特性の系統的解析を行う。
結果は理論的にシミュレートされ、トラップイオンおよび超伝導量子プロセッサ上で実験的に検証された。
論文 参考訳(メタデータ) (2024-11-25T22:42:38Z) - Observation of quantum superposition of topological defects in a trapped ion quantum simulator [10.307677845109378]
トラップイオン量子シミュレータにおけるトポロジカル欠陥の量子重ね合わせの観測について報告する。
我々の研究は、量子キブル・ズレーク物理学における非平衡力学のための有用なツールを提供する。
論文 参考訳(メタデータ) (2024-10-20T13:27:13Z) - Thermalization and Criticality on an Analog-Digital Quantum Simulator [133.58336306417294]
本稿では,69個の超伝導量子ビットからなる量子シミュレータについて述べる。
古典的Kosterlitz-Thouless相転移のシグネチャと,Kibble-Zurekスケール予測からの強い偏差を観測する。
本システムは, 対角二量体状態でディジタル的に調製し, 熱化時のエネルギーと渦の輸送を画像化する。
論文 参考訳(メタデータ) (2024-05-27T17:40:39Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
本研究では,高エネルギー物理における量子データ学習の実践的問題への適用性について検討する。
我々は、量子畳み込みニューラルネットワークに基づくアンサッツを用いて、基底状態の量子位相を認識できることを数値的に示す。
これらのベンチマークで示された非自明な学習特性の観察は、高エネルギー物理学における量子データ学習アーキテクチャのさらなる探求の動機となる。
論文 参考訳(メタデータ) (2023-06-29T18:00:01Z) - Neural-network quantum states for ultra-cold Fermi gases [49.725105678823915]
この研究は、メッセージパッシングアーキテクチャに基づいたバックフロー変換を含む、新しいPfaffian-Jastrowニューラルネットワーク量子状態を導入する。
逆スピン対分布関数による強いペアリング相関の出現を観察する。
この結果から, ニューラルネットワーク量子状態は, 超低温フェルミガスの研究に有望な戦略をもたらすことが示唆された。
論文 参考訳(メタデータ) (2023-05-15T17:46:09Z) - Probing Topological Spin Liquids on a Programmable Quantum Simulator [40.96261204117952]
219原子プログラム可能な量子シミュレータを用いて量子スピン状態の探索を行う。
このアプローチでは、カゴメ格子のリンク上に原子の配列が配置され、リドベルク封鎖下での進化はフラストレーションのある量子状態を生成する。
古典的トーリック符号型の量子スピン液体相の開始は、トポロジカル弦演算子の評価により検出される。
論文 参考訳(メタデータ) (2021-04-09T00:18:12Z) - Realizing topologically ordered states on a quantum processor [0.0845004185087851]
トポロジカル秩序状態は、凝縮物質と合成量子系の両方において非常に難しいことが証明されている。
超伝導量子プロセッサ上での効率的な量子回路を用いて,トリック符号ハミルトニアンの基底状態を作成する。
論文 参考訳(メタデータ) (2021-04-02T18:00:01Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
散逸性量子系のトポロジーを量子軌道の観点から論じる。
我々は、暗状態誘導ハミルトニアンの集合がハミルトニアン空間に非自明な位相構造を課すような、翻訳不変の広い種類の崩壊モデルを示す。
論文 参考訳(メタデータ) (2020-07-12T11:26:02Z) - Quantum Hall phase emerging in an array of atoms interacting with
photons [101.18253437732933]
位相量子相は現代物理学の多くの概念の根底にある。
ここでは、トポロジカルエッジ状態、スペクトルランダウレベル、ホフスタッターバタフライを持つ量子ホール相が、単純な量子系に出現することを明らかにする。
このようなシステムでは、古典的なディックモデルによって記述されている光に結合した2レベル原子(量子ビット)の配列が、最近、低温原子と超伝導量子ビットによる実験で実現されている。
論文 参考訳(メタデータ) (2020-03-18T14:56:39Z) - Einselection from incompatible decoherence channels [62.997667081978825]
我々は、CQED実験にインスパイアされたオープン量子力学を、2つの非可換リンドブラッド作用素を用いて解析する。
Fock状態は、決定的な結合をデコヒーレンスにデコヒーレンスする最も堅牢な状態のままであることを示す。
論文 参考訳(メタデータ) (2020-01-29T14:15:19Z) - Experimental Detection of the Quantum Phases of a Three-Dimensional
Topological Insulator on a Spin Quantum Simulator [4.614115414323219]
AIII(キラルユニタリ)対称性クラスにおける3次元トポロジカル絶縁体について検討する。
動的クエンチング手法を応用したトポロジカルな特性を実験的に実証した。
その結果、位相不変量はバンド反転面上で高い精度で測定される。
論文 参考訳(メタデータ) (2020-01-15T03:51:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。