Entanglement in cyclic sign invariant quantum states
- URL: http://arxiv.org/abs/2501.04786v1
- Date: Wed, 08 Jan 2025 19:03:18 GMT
- Title: Entanglement in cyclic sign invariant quantum states
- Authors: Aabhas Gulati, Ion Nechita, Satvik Singh,
- Abstract summary: We study bipartite quantum states that are invariant under the local action of the cyclic sign group.
Their important semi-definite properties, such as positivity and positivity under partial transpose (PPT), can be simply characterized in terms of these vectors.
- Score: 0.40964539027092906
- License:
- Abstract: We introduce and study bipartite quantum states that are invariant under the local action of the cyclic sign group. Due to symmetry, these states are sparse and can be parameterized by a triple of vectors. Their important semi-definite properties, such as positivity and positivity under partial transpose (PPT), can be simply characterized in terms of these vectors and their discrete Fourier transforms. We study in detail the entanglement properties of this family of symmetric states, showing in particular that it contains PPT entangled states. For states that are diagonal in the Dicke basis, deciding separability is equivalent to a circulant version of the complete positivity problem. We provide some geometric results for the PPT cone, showing in particular that it is polyhedral. In local dimension less than 5, we completely characterize these sets and construct entanglement witnesses; some partial results are also obtained for d = 6, 7. Finally, we initiate the study of cyclic sign covariant quantum channels, showing in particular that the PPT squared conjecture holds for some of these maps.
Related papers
- Bridging conformal field theory and parton approaches to SU(n)_k chiral spin liquids [48.225436651971805]
We employ the SU(n)_k Wess-Zumino-Witten (WZW) model in conformal field theory to construct lattice wave functions in both one and two dimensions.
In one dimension, these wave functions describe critical spin chains whose universality classes are in one-to-one correspondence with the WZW models used in the construction.
In two dimensions, our constructions yield model wave functions for chiral spin liquids, and we show how to find all topological sectors of them in a systematic way.
arXiv Detail & Related papers (2025-01-16T14:42:00Z) - Topological nature of edge states for one-dimensional systems without symmetry protection [46.87902365052209]
We numerically verify and analytically prove a winding number invariant that correctly predicts the number of edge states in one-dimensional, nearest-neighbour (between unit cells)
Our invariant is invariant under unitary and similarity transforms.
arXiv Detail & Related papers (2024-12-13T19:44:54Z) - Crystalline invariants of fractional Chern insulators [6.267386954898001]
We show how ground state expectation values of partial rotations can be used to extract crystalline invariants.
For the topological orders we consider, we show that the Hall conductivity, filling fraction, and partial rotation invariants fully characterize the system.
arXiv Detail & Related papers (2024-05-27T17:59:59Z) - Geometry of degenerate quantum states, configurations of $m$-planes and invariants on complex Grassmannians [55.2480439325792]
We show how to reduce the geometry of degenerate states to the non-abelian connection $A$.
We find independent invariants associated with each triple of subspaces.
Some of them generalize the Berry-Pancharatnam phase, and some do not have analogues for 1-dimensional subspaces.
arXiv Detail & Related papers (2024-04-04T06:39:28Z) - Symmetry-restricted quantum circuits are still well-behaved [45.89137831674385]
We show that quantum circuits restricted by a symmetry inherit the properties of the whole special unitary group $SU(2n)$.
It extends prior work on symmetric states to the operators and shows that the operator space follows the same structure as the state space.
arXiv Detail & Related papers (2024-02-26T06:23:39Z) - Three-dimensional $\mathcal{P}\mathcal{T}$-symmetric topological phases with Pontryagin index [0.0]
We study naturally arising multi-gap linked nodal rings, topologically characterized by split-biquaternion charges.
We analyze the edge states corresponding to this Pontryagin index as well as their subject to the gap-closing disorder.
arXiv Detail & Related papers (2023-08-29T18:21:48Z) - Effects of detuning on $\mathcal{PT}$-symmetric, tridiagonal,
tight-binding models [0.0]
Non-Hermitian, tight-binding $mathcalPT$-symmetric models are extensively studied in the literature.
Here, we investigate two forms of non-Hermitian Hamiltonians to study the $mathcalPT$-symmetry breaking thresholds and features of corresponding surfaces of exceptional points (EPs)
Taken together, our results provide a detailed understanding of detuned tight-binding models with a pair of gain-loss potentials.
arXiv Detail & Related papers (2023-02-26T01:36:59Z) - Annihilating Entanglement Between Cones [77.34726150561087]
We show that Lorentz cones are the only cones with a symmetric base for which a certain stronger version of the resilience property is satisfied.
Our proof exploits the symmetries of the Lorentz cones and applies two constructions resembling protocols for entanglement distillation.
arXiv Detail & Related papers (2021-10-22T15:02:39Z) - Supremum of Entanglement Measure for Symmetric Gaussian States, and
Entangling Capacity [0.0]
We show a method to calculate bounds for entangling capacity, the amount of entanglement that can be produced by a quantum operation.
We also show the supremum of negativity for symmetric Gaussian states.
arXiv Detail & Related papers (2020-08-10T04:14:49Z) - General superposition states associated to the rotational and inversion
symmetries in the phase space [0.0]
It is shown that the resulting states form an $n$-dimensional set of states which can lead to the finite representation of specific systems.
The presence of nonclassical properties in these states as subpoissonian photon statistics is addressed.
arXiv Detail & Related papers (2020-04-06T13:10:34Z) - SU$(3)_1$ Chiral Spin Liquid on the Square Lattice: a View from
Symmetric PEPS [55.41644538483948]
Quantum spin liquids can be faithfully represented and efficiently characterized within the framework of Projectedangled Pair States (PEPS)
Characteristic features are revealed by the entanglement spectrum (ES) on an infinitely long cylinder.
Special features in the ES are shown to be in correspondence with bulk anyonic correlations, indicating a fine structure in the holographic bulk-edge correspondence.
arXiv Detail & Related papers (2019-12-31T16:30:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.