RieszBoost: Gradient Boosting for Riesz Regression
- URL: http://arxiv.org/abs/2501.04871v2
- Date: Tue, 04 Feb 2025 22:04:32 GMT
- Title: RieszBoost: Gradient Boosting for Riesz Regression
- Authors: Kaitlyn J. Lee, Alejandro Schuler,
- Abstract summary: We propose a novel gradient boosting algorithm to directly estimate the Riesz representer without requiring its explicit analytical form.
We show that our algorithm performs on par with or better than indirect estimation techniques across a range of functionals.
- Score: 49.737777802061984
- License:
- Abstract: Answering causal questions often involves estimating linear functionals of conditional expectations, such as the average treatment effect or the effect of a longitudinal modified treatment policy. By the Riesz representation theorem, these functionals can be expressed as the expected product of the conditional expectation of the outcome and the Riesz representer, a key component in doubly robust estimation methods. Traditionally, the Riesz representer is estimated indirectly by deriving its explicit analytical form, estimating its components, and substituting these estimates into the known form (e.g., the inverse propensity score). However, deriving or estimating the analytical form can be challenging, and substitution methods are often sensitive to practical positivity violations, leading to higher variance and wider confidence intervals. In this paper, we propose a novel gradient boosting algorithm to directly estimate the Riesz representer without requiring its explicit analytical form. This method is particularly suited for tabular data, offering a flexible, nonparametric, and computationally efficient alternative to existing methods for Riesz regression. Through simulation studies, we demonstrate that our algorithm performs on par with or better than indirect estimation techniques across a range of functionals, providing a user-friendly and robust solution for estimating causal quantities.
Related papers
- Nonparametric estimation of Hawkes processes with RKHSs [1.775610745277615]
This paper addresses nonparametric estimation of nonlinear Hawkes processes, where the interaction functions are assumed to lie in a reproducing kernel space (RKHS)
Motivated by applications in neuroscience, the model allows complex interaction functions, in order to express exciting and inhibiting effects, but also a combination of both.
It shows that our method achieves a better performance compared to related nonparametric estimation techniques and suits neuronal applications.
arXiv Detail & Related papers (2024-11-01T14:26:50Z) - Model-Based Epistemic Variance of Values for Risk-Aware Policy Optimization [59.758009422067]
We consider the problem of quantifying uncertainty over expected cumulative rewards in model-based reinforcement learning.
We propose a new uncertainty Bellman equation (UBE) whose solution converges to the true posterior variance over values.
We introduce a general-purpose policy optimization algorithm, Q-Uncertainty Soft Actor-Critic (QU-SAC) that can be applied for either risk-seeking or risk-averse policy optimization.
arXiv Detail & Related papers (2023-12-07T15:55:58Z) - Likelihood Ratio Confidence Sets for Sequential Decision Making [51.66638486226482]
We revisit the likelihood-based inference principle and propose to use likelihood ratios to construct valid confidence sequences.
Our method is especially suitable for problems with well-specified likelihoods.
We show how to provably choose the best sequence of estimators and shed light on connections to online convex optimization.
arXiv Detail & Related papers (2023-11-08T00:10:21Z) - Errors-in-variables Fr\'echet Regression with Low-rank Covariate
Approximation [2.1756081703276]
Fr'echet regression has emerged as a promising approach for regression analysis involving non-Euclidean response variables.
Our proposed framework combines the concepts of global Fr'echet regression and principal component regression, aiming to improve the efficiency and accuracy of the regression estimator.
arXiv Detail & Related papers (2023-05-16T08:37:54Z) - Data-Driven Influence Functions for Optimization-Based Causal Inference [105.5385525290466]
We study a constructive algorithm that approximates Gateaux derivatives for statistical functionals by finite differencing.
We study the case where probability distributions are not known a priori but need to be estimated from data.
arXiv Detail & Related papers (2022-08-29T16:16:22Z) - Off-Policy Evaluation with Policy-Dependent Optimization Response [90.28758112893054]
We develop a new framework for off-policy evaluation with a textitpolicy-dependent linear optimization response.
We construct unbiased estimators for the policy-dependent estimand by a perturbation method.
We provide a general algorithm for optimizing causal interventions.
arXiv Detail & Related papers (2022-02-25T20:25:37Z) - Support estimation in high-dimensional heteroscedastic mean regression [2.07180164747172]
We consider a linear mean regression model with random design and potentially heteroscedastic, heavy-tailed errors.
We use a strictly convex, smooth variant of the Huber loss function with tuning parameter depending on the parameters of the problem.
For the resulting estimator we show sign-consistency and optimal rates of convergence in the $ell_infty$ norm.
arXiv Detail & Related papers (2020-11-03T09:46:31Z) - On the Estimation of Derivatives Using Plug-in Kernel Ridge Regression
Estimators [4.392844455327199]
We propose a simple plug-in kernel ridge regression (KRR) estimator in nonparametric regression.
We provide a non-asymotic analysis to study the behavior of the proposed estimator in a unified manner.
The proposed estimator achieves the optimal rate of convergence with the same choice of tuning parameter for any order of derivatives.
arXiv Detail & Related papers (2020-06-02T02:32:39Z) - SLEIPNIR: Deterministic and Provably Accurate Feature Expansion for
Gaussian Process Regression with Derivatives [86.01677297601624]
We propose a novel approach for scaling GP regression with derivatives based on quadrature Fourier features.
We prove deterministic, non-asymptotic and exponentially fast decaying error bounds which apply for both the approximated kernel as well as the approximated posterior.
arXiv Detail & Related papers (2020-03-05T14:33:20Z) - Robust Boosting for Regression Problems [0.0]
Gradient boosting algorithms construct a regression predictor using a linear combination of base learners''
The robust boosting algorithm is based on a two-stage approach, similar to boosting is done for robust linear regression.
When no atypical observations are present, the robust boosting approach works as well as a standard gradient boosting with a squared loss.
arXiv Detail & Related papers (2020-02-06T01:12:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.