Non-asymptotic analysis of the performance of the penalized least trimmed squares in sparse models
- URL: http://arxiv.org/abs/2501.04946v1
- Date: Thu, 09 Jan 2025 03:36:17 GMT
- Title: Non-asymptotic analysis of the performance of the penalized least trimmed squares in sparse models
- Authors: Yijun Zuo,
- Abstract summary: The least trimmed squares (LTS) estimator is a renowned robust alternative to the classic least squares estimator.
This article establishes some finite sample (non-asymptotic) error bounds for estimating and predicting based on LTS with high probability.
- Score: 0.0
- License:
- Abstract: The least trimmed squares (LTS) estimator is a renowned robust alternative to the classic least squares estimator and is popular in location, regression, machine learning, and AI literature. Many studies exist on LTS, including its robustness, computation algorithms, extension to non-linear cases, asymptotics, etc. The LTS has been applied in the penalized regression in a high-dimensional real-data sparse-model setting where dimension $p$ (in thousands) is much larger than sample size $n$ (in tens, or hundreds). In such a practical setting, the sample size $n$ often is the count of sub-population that has a special attribute (e.g. the count of patients of Alzheimer's, Parkinson's, Leukemia, or ALS, etc.) among a population with a finite fixed size N. Asymptotic analysis assuming that $n$ tends to infinity is not practically convincing and legitimate in such a scenario. A non-asymptotic or finite sample analysis will be more desirable and feasible. This article establishes some finite sample (non-asymptotic) error bounds for estimating and predicting based on LTS with high probability for the first time.
Related papers
- On Computationally Efficient Learning of Exponential Family
Distributions [33.229944519289795]
We focus on the setting where the support as well as the natural parameters are appropriately bounded.
Our method achives the order-optimal sample complexity of $O(sf log(k)/alpha2)$ when tailored for node-wise-sparse random fields.
arXiv Detail & Related papers (2023-09-12T17:25:32Z) - Kernel-based off-policy estimation without overlap: Instance optimality
beyond semiparametric efficiency [53.90687548731265]
We study optimal procedures for estimating a linear functional based on observational data.
For any convex and symmetric function class $mathcalF$, we derive a non-asymptotic local minimax bound on the mean-squared error.
arXiv Detail & Related papers (2023-01-16T02:57:37Z) - On High dimensional Poisson models with measurement error: hypothesis
testing for nonlinear nonconvex optimization [13.369004892264146]
We estimation and testing regression model with high dimensionals, which has wide applications in analyzing data.
We propose to estimate regression parameter through minimizing penalized consistency.
The proposed method is applied to the Alzheimer's Disease Initiative.
arXiv Detail & Related papers (2022-12-31T06:58:42Z) - Heavy-tailed Streaming Statistical Estimation [58.70341336199497]
We consider the task of heavy-tailed statistical estimation given streaming $p$ samples.
We design a clipped gradient descent and provide an improved analysis under a more nuanced condition on the noise of gradients.
arXiv Detail & Related papers (2021-08-25T21:30:27Z) - SLOE: A Faster Method for Statistical Inference in High-Dimensional
Logistic Regression [68.66245730450915]
We develop an improved method for debiasing predictions and estimating frequentist uncertainty for practical datasets.
Our main contribution is SLOE, an estimator of the signal strength with convergence guarantees that reduces the computation time of estimation and inference by orders of magnitude.
arXiv Detail & Related papers (2021-03-23T17:48:56Z) - Sparse network asymptotics for logistic regression [0.0]
Asymptotic normality of the logistic regression is shown using a martingale central limit theorem (CLT) for triangular arrays.
Sparse networks may lead to better inference since they suggest variances which incorporate additional sources of sampling variation and (ii) are valid under varying degrees of dyadic dependence.
arXiv Detail & Related papers (2020-10-09T17:46:29Z) - Breaking the Sample Size Barrier in Model-Based Reinforcement Learning
with a Generative Model [50.38446482252857]
This paper is concerned with the sample efficiency of reinforcement learning, assuming access to a generative model (or simulator)
We first consider $gamma$-discounted infinite-horizon Markov decision processes (MDPs) with state space $mathcalS$ and action space $mathcalA$.
We prove that a plain model-based planning algorithm suffices to achieve minimax-optimal sample complexity given any target accuracy level.
arXiv Detail & Related papers (2020-05-26T17:53:18Z) - Computationally efficient sparse clustering [67.95910835079825]
We provide a finite sample analysis of a new clustering algorithm based on PCA.
We show that it achieves the minimax optimal misclustering rate in the regime $|theta infty$.
arXiv Detail & Related papers (2020-05-21T17:51:30Z) - Is Temporal Difference Learning Optimal? An Instance-Dependent Analysis [102.29671176698373]
We address the problem of policy evaluation in discounted decision processes, and provide Markov-dependent guarantees on the $ell_infty$error under a generative model.
We establish both and non-asymptotic versions of local minimax lower bounds for policy evaluation, thereby providing an instance-dependent baseline by which to compare algorithms.
arXiv Detail & Related papers (2020-03-16T17:15:28Z) - Error bounds in estimating the out-of-sample prediction error using
leave-one-out cross validation in high-dimensions [19.439945058410203]
We study the problem of out-of-sample risk estimation in the high dimensional regime.
Extensive empirical evidence confirms the accuracy of leave-one-out cross validation.
One technical advantage of the theory is that it can be used to clarify and connect some results from the recent literature on scalable approximate LO.
arXiv Detail & Related papers (2020-03-03T20:07:07Z) - Communication-Efficient Distributed Estimator for Generalized Linear
Models with a Diverging Number of Covariates [7.427903819459701]
A novel method is proposed to obtain anally efficient estimator for large-scale distributed data by two rounds of communication.
In this novel method, the assumption on the number of servers is more relaxed and thus practical for real-world applications.
arXiv Detail & Related papers (2020-01-17T08:51:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.