論文の概要: Seeing with Partial Certainty: Conformal Prediction for Robotic Scene Recognition in Built Environments
- arxiv url: http://arxiv.org/abs/2501.04947v1
- Date: Thu, 09 Jan 2025 03:50:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-10 13:59:16.435094
- Title: Seeing with Partial Certainty: Conformal Prediction for Robotic Scene Recognition in Built Environments
- Title(参考訳): 部分的確実性:建設環境におけるロボットシーン認識のためのコンフォーマル予測
- Authors: Yifan Xu, Vineet Kamat, Carol Menassa,
- Abstract要約: 本稿では,VLMを用いた位置認識における不確実性の測定・調整を目的としたフレームワークであるSeing with partial Certainty(SwPC)を紹介する。
SwPCは、人間の助けを求めるリクエストを最小限に抑えつつ、位置認識に関する統計的保証を提供するために、共形予測の理論に基づいて構築されている。
- 参考スコア(独自算出の注目度): 6.295098866364597
- License:
- Abstract: In assistive robotics serving people with disabilities (PWD), accurate place recognition in built environments is crucial to ensure that robots navigate and interact safely within diverse indoor spaces. Language interfaces, particularly those powered by Large Language Models (LLM) and Vision Language Models (VLM), hold significant promise in this context, as they can interpret visual scenes and correlate them with semantic information. However, such interfaces are also known for their hallucinated predictions. In addition, language instructions provided by humans can also be ambiguous and lack precise details about specific locations, objects, or actions, exacerbating the hallucination issue. In this work, we introduce Seeing with Partial Certainty (SwPC) - a framework designed to measure and align uncertainty in VLM-based place recognition, enabling the model to recognize when it lacks confidence and seek assistance when necessary. This framework is built on the theory of conformal prediction to provide statistical guarantees on place recognition while minimizing requests for human help in complex indoor environment settings. Through experiments on the widely used richly-annotated scene dataset Matterport3D, we show that SwPC significantly increases the success rate and decreases the amount of human intervention required relative to the prior art. SwPC can be utilized with any VLMs directly without requiring model fine-tuning, offering a promising, lightweight approach to uncertainty modeling that complements and scales alongside the expanding capabilities of foundational models.
- Abstract(参考訳): 障害者を支援する支援ロボティクス(PWD)において、建設環境における正確な位置認識は、多様な屋内空間内でロボットが安全に移動し、対話することを保証するために不可欠である。
言語インターフェース、特にLarge Language Models (LLM) とVision Language Models (VLM) は、視覚的なシーンを解釈し、セマンティック情報と相関付けることができるため、この文脈において大きな可能性を秘めている。
しかし、このようなインターフェースは幻覚的な予測でも知られている。
加えて、人間によって提供される言語命令は曖昧であり、特定の場所、対象、行動に関する正確な詳細が欠如しており、幻覚の問題を悪化させる可能性がある。
本稿では,VLMを用いた位置認識における不確実性の測定・調整を目的としたフレームワークであるSeeeing with partial Certainty(SwPC)を紹介する。
このフレームワークは、複雑な屋内環境における人間支援の要求を最小限に抑えつつ、位置認識に関する統計的保証を提供するために、共形予測の理論に基づいて構築されている。
リッチな注釈付きシーンデータセットMatterport3Dの実験を通して、SwPCは成功率を著しく増加させ、先行技術と比較して人的介入の量を減少させることを示した。
SwPCはモデル微調整を必要とせずに直接VLMで利用でき、基礎モデルの拡張能力と並行して拡張する不確実性モデリングに対する有望で軽量なアプローチを提供する。
関連論文リスト
- Visual Contexts Clarify Ambiguous Expressions: A Benchmark Dataset [0.39462888523270856]
VAGUEは3.9Kの間接的人間発話と対応するシーンを組み合わせたマルチモーダル・ベンチマークである。
我々の研究は、モデルが間接的なコミュニケーションを理解する能力について深く掘り下げ、より洗練され人間的な対話が可能なモデルの開発に貢献することを目的としています。
論文 参考訳(メタデータ) (2024-11-21T14:01:42Z) - Tuning-Free Accountable Intervention for LLM Deployment -- A
Metacognitive Approach [55.613461060997004]
大規模言語モデル(LLM)は、自然言語処理タスクの幅広い領域にわたる変換的進歩を触媒している。
我々は,自己認識型誤り識別と訂正機能を備えたLLMを実現するために,textbfCLEARと呼ばれる革新的なテキストメタ認知手法を提案する。
論文 参考訳(メタデータ) (2024-03-08T19:18:53Z) - Language-guided Robot Grasping: CLIP-based Referring Grasp Synthesis in
Clutter [14.489086924126253]
本研究は, 乱雑な場面において, 自然言語で参照される物体のつかみポーズを予測する, つかみ合成を参照する作業に焦点をあてる。
既存のアプローチでは、参照対象をまずセグメント化し、適切な把握を提案し、自然屋内シーンの複雑さを捉えないプライベートデータセットやシミュレータで評価される。
本稿では,CLIPの視覚的接地機能を利用して,画像とテキストのペアから直接合成を学習する新しいエンド・ツー・エンド・モデル(CROG)を提案する。
論文 参考訳(メタデータ) (2023-11-09T22:55:10Z) - Expanding Frozen Vision-Language Models without Retraining: Towards
Improved Robot Perception [0.0]
視覚言語モデル(VLM)は、視覚的質問応答と推論タスクにおいて強力な能力を示している。
本稿では,異なるモダリティの埋め込み空間を視覚埋め込み空間に整列させる手法を示す。
複数モードを入力として使用すると、VLMのシーン理解が向上し、様々なタスクにおける全体的なパフォーマンスが向上することを示す。
論文 参考訳(メタデータ) (2023-08-31T06:53:55Z) - Robots That Ask For Help: Uncertainty Alignment for Large Language Model
Planners [85.03486419424647]
KnowNoは、大きな言語モデルの不確実性を測定し、調整するためのフレームワークである。
KnowNoは、タスク完了に関する統計的保証を提供する共形予測理論に基づいている。
論文 参考訳(メタデータ) (2023-07-04T21:25:12Z) - Visual Affordance Prediction for Guiding Robot Exploration [56.17795036091848]
我々は,ロボット探索を導くための視覚能力の学習手法を開発した。
VQ-VAEの潜伏埋め込み空間における条件分布の学習にはTransformerベースのモデルを用いる。
本稿では,ロボット操作における視覚的目標条件付きポリシー学習において,目標サンプリング分布として機能することで探索を導くために,トレーニングされた余裕モデルをどのように利用できるかを示す。
論文 参考訳(メタデータ) (2023-05-28T17:53:09Z) - Weakly-Supervised HOI Detection from Interaction Labels Only and
Language/Vision-Language Priors [36.75629570208193]
人-物相互作用検出(Human-object Interaction, HOI)は、人-物対とその相互作用カテゴリを、与えられた自然な画像から抽出することを目的としている。
本稿では,画像レベルのインタラクションラベルのみを用いて,文献における最も弱い監視設定によるHOI検出に取り組む。
まず,非相互作用型人間とオブジェクトの提案を駆使して,バッグ内の正の対の質を高める手法を提案する。
第2に、大きな言語モデルを使用して、人間とオブジェクトのカテゴリ間の相互作用を問合せし、モデルを強調しないよう強制する。
論文 参考訳(メタデータ) (2023-03-09T19:08:02Z) - INVIGORATE: Interactive Visual Grounding and Grasping in Clutter [56.00554240240515]
INVIGORATEは、自然言語で人間と対話し、特定の物体をクラッタで把握するロボットシステムである。
我々は、物体検出、視覚的接地、質問生成、OBR検出と把握のために、別々のニューラルネットワークを訓練する。
我々は、学習したニューラルネットワークモジュールを統合する、部分的に観測可能なマルコフ決定プロセス(POMDP)を構築します。
論文 参考訳(メタデータ) (2021-08-25T07:35:21Z) - TRiPOD: Human Trajectory and Pose Dynamics Forecasting in the Wild [77.59069361196404]
TRiPODは、グラフの注目ネットワークに基づいて身体のダイナミクスを予測する新しい方法です。
実世界の課題を取り入れるために,各フレームで推定された身体関節が可視・視認可能かどうかを示す指標を学習する。
評価の結果,TRiPODは,各軌道に特化して設計され,予測タスクに特化している。
論文 参考訳(メタデータ) (2021-04-08T20:01:00Z) - Inter-class Discrepancy Alignment for Face Recognition [55.578063356210144]
IA(Inter-class DiscrepancyAlignment)という統合フレームワークを提案する。
IDA-DAOは、画像と隣人の相違を考慮した類似度スコアの整合に使用される。
IDA-SSEは、GANで生成された仮想候補画像を導入することで、説得力のあるクラス間隣人を提供できます。
論文 参考訳(メタデータ) (2021-03-02T08:20:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。