V2C-CBM: Building Concept Bottlenecks with Vision-to-Concept Tokenizer
- URL: http://arxiv.org/abs/2501.04975v1
- Date: Thu, 09 Jan 2025 05:12:38 GMT
- Title: V2C-CBM: Building Concept Bottlenecks with Vision-to-Concept Tokenizer
- Authors: Hangzhou He, Lei Zhu, Xinliang Zhang, Shuang Zeng, Qian Chen, Yanye Lu,
- Abstract summary: Concept Bottleneck Models (CBMs) offer inherent interpretability by translating images into human-comprehensible concepts.
Recent approaches have leveraged the knowledge of large language models to construct concept bottlenecks.
In this study, we investigate to avoid these issues by constructing CBMs directly from multimodal models.
- Score: 19.177297480709512
- License:
- Abstract: Concept Bottleneck Models (CBMs) offer inherent interpretability by initially translating images into human-comprehensible concepts, followed by a linear combination of these concepts for classification. However, the annotation of concepts for visual recognition tasks requires extensive expert knowledge and labor, constraining the broad adoption of CBMs. Recent approaches have leveraged the knowledge of large language models to construct concept bottlenecks, with multimodal models like CLIP subsequently mapping image features into the concept feature space for classification. Despite this, the concepts produced by language models can be verbose and may introduce non-visual attributes, which hurts accuracy and interpretability. In this study, we investigate to avoid these issues by constructing CBMs directly from multimodal models. To this end, we adopt common words as base concept vocabulary and leverage auxiliary unlabeled images to construct a Vision-to-Concept (V2C) tokenizer that can explicitly quantize images into their most relevant visual concepts, thus creating a vision-oriented concept bottleneck tightly coupled with the multimodal model. This leads to our V2C-CBM which is training efficient and interpretable with high accuracy. Our V2C-CBM has matched or outperformed LLM-supervised CBMs on various visual classification benchmarks, validating the efficacy of our approach.
Related papers
- Explain via Any Concept: Concept Bottleneck Model with Open Vocabulary Concepts [8.028021897214238]
"OpenCBM" is the first CBM with concepts of open vocabularies.
Our model significantly outperforms the previous state-of-the-art CBM by 9% in the classification accuracy on the benchmark dataset CUB-200-2011.
arXiv Detail & Related papers (2024-08-05T06:42:00Z) - Discover-then-Name: Task-Agnostic Concept Bottlenecks via Automated Concept Discovery [52.498055901649025]
Concept Bottleneck Models (CBMs) have been proposed to address the 'black-box' problem of deep neural networks.
We propose a novel CBM approach -- called Discover-then-Name-CBM (DN-CBM) -- that inverts the typical paradigm.
Our concept extraction strategy is efficient, since it is agnostic to the downstream task, and uses concepts already known to the model.
arXiv Detail & Related papers (2024-07-19T17:50:11Z) - A Concept-Based Explainability Framework for Large Multimodal Models [52.37626977572413]
We propose a dictionary learning based approach, applied to the representation of tokens.
We show that these concepts are well semantically grounded in both vision and text.
We show that the extracted multimodal concepts are useful to interpret representations of test samples.
arXiv Detail & Related papers (2024-06-12T10:48:53Z) - Improving Concept Alignment in Vision-Language Concept Bottleneck Models [9.228586820098723]
Concept Bottleneck Models (CBM) map images to human-interpretable concepts before making class predictions.
Recent approaches automate CBM construction by prompting Large Language Models (LLMs) to generate text concepts.
It is desired to build CBMs with concepts defined by human experts rather than LLM-generated ones.
arXiv Detail & Related papers (2024-05-03T03:02:00Z) - Incremental Residual Concept Bottleneck Models [29.388549499546556]
Concept Bottleneck Models (CBMs) map the black-box visual representations extracted by deep neural networks onto a set of interpretable concepts.
We propose the Incremental Residual Concept Bottleneck Model (Res-CBM) to address the challenge of concept completeness.
Our approach can be applied to any user-defined concept bank, as a post-hoc processing method to enhance the performance of any CBMs.
arXiv Detail & Related papers (2024-04-13T12:02:19Z) - MyVLM: Personalizing VLMs for User-Specific Queries [78.33252556805931]
We take a first step toward the personalization of vision-language models, enabling them to learn and reason over user-provided concepts.
To effectively recognize a variety of user-specific concepts, we augment the VLM with external concept heads that function as toggles for the model.
Having recognized the concept, we learn a new concept embedding in the intermediate feature space of the VLM.
This embedding is tasked with guiding the language model to naturally integrate the target concept in its generated response.
arXiv Detail & Related papers (2024-03-21T17:51:01Z) - Visual Concept-driven Image Generation with Text-to-Image Diffusion Model [65.96212844602866]
Text-to-image (TTI) models have demonstrated impressive results in generating high-resolution images of complex scenes.
Recent approaches have extended these methods with personalization techniques that allow them to integrate user-illustrated concepts.
However, the ability to generate images with multiple interacting concepts, such as human subjects, as well as concepts that may be entangled in one, or across multiple, image illustrations remains illusive.
We propose a concept-driven TTI personalization framework that addresses these core challenges.
arXiv Detail & Related papers (2024-02-18T07:28:37Z) - M^2ConceptBase: A Fine-Grained Aligned Concept-Centric Multimodal Knowledge Base [61.53959791360333]
We introduce M2ConceptBase, the first concept-centric multimodal knowledge base (MMKB)
We propose a context-aware approach to align concept-image and concept-description pairs using context information from image-text datasets.
Human studies confirm more than 95% alignment accuracy, underscoring its quality.
arXiv Detail & Related papers (2023-12-16T11:06:11Z) - Coarse-to-Fine Concept Bottleneck Models [9.910980079138206]
This work targets ante hoc interpretability, and specifically Concept Bottleneck Models (CBMs)
Our goal is to design a framework that admits a highly interpretable decision making process with respect to human understandable concepts, on two levels of granularity.
Within this framework, concept information does not solely rely on the similarity between the whole image and general unstructured concepts; instead, we introduce the notion of concept hierarchy to uncover and exploit more granular concept information residing in patch-specific regions of the image scene.
arXiv Detail & Related papers (2023-10-03T14:57:31Z) - ConceptBed: Evaluating Concept Learning Abilities of Text-to-Image
Diffusion Models [79.10890337599166]
We introduce ConceptBed, a large-scale dataset that consists of 284 unique visual concepts and 33K composite text prompts.
We evaluate visual concepts that are either objects, attributes, or styles, and also evaluate four dimensions of compositionality: counting, attributes, relations, and actions.
Our results point to a trade-off between learning the concepts and preserving the compositionality which existing approaches struggle to overcome.
arXiv Detail & Related papers (2023-06-07T18:00:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.