Incremental Residual Concept Bottleneck Models
- URL: http://arxiv.org/abs/2404.08978v2
- Date: Wed, 17 Apr 2024 10:59:59 GMT
- Title: Incremental Residual Concept Bottleneck Models
- Authors: Chenming Shang, Shiji Zhou, Hengyuan Zhang, Xinzhe Ni, Yujiu Yang, Yuwang Wang,
- Abstract summary: Concept Bottleneck Models (CBMs) map the black-box visual representations extracted by deep neural networks onto a set of interpretable concepts.
We propose the Incremental Residual Concept Bottleneck Model (Res-CBM) to address the challenge of concept completeness.
Our approach can be applied to any user-defined concept bank, as a post-hoc processing method to enhance the performance of any CBMs.
- Score: 29.388549499546556
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Concept Bottleneck Models (CBMs) map the black-box visual representations extracted by deep neural networks onto a set of interpretable concepts and use the concepts to make predictions, enhancing the transparency of the decision-making process. Multimodal pre-trained models can match visual representations with textual concept embeddings, allowing for obtaining the interpretable concept bottleneck without the expertise concept annotations. Recent research has focused on the concept bank establishment and the high-quality concept selection. However, it is challenging to construct a comprehensive concept bank through humans or large language models, which severely limits the performance of CBMs. In this work, we propose the Incremental Residual Concept Bottleneck Model (Res-CBM) to address the challenge of concept completeness. Specifically, the residual concept bottleneck model employs a set of optimizable vectors to complete missing concepts, then the incremental concept discovery module converts the complemented vectors with unclear meanings into potential concepts in the candidate concept bank. Our approach can be applied to any user-defined concept bank, as a post-hoc processing method to enhance the performance of any CBMs. Furthermore, to measure the descriptive efficiency of CBMs, the Concept Utilization Efficiency (CUE) metric is proposed. Experiments show that the Res-CBM outperforms the current state-of-the-art methods in terms of both accuracy and efficiency and achieves comparable performance to black-box models across multiple datasets.
Related papers
- EQ-CBM: A Probabilistic Concept Bottleneck with Energy-based Models and Quantized Vectors [4.481898130085069]
Concept bottleneck models (CBMs) have gained attention as an effective approach by leveraging human-understandable concepts to enhance interpretability.
Existing CBMs face challenges due to deterministic concept encoding and reliance on inconsistent concepts, leading to inaccuracies.
We propose EQ-CBM, a novel framework that enhances CBMs through probabilistic concept encoding.
arXiv Detail & Related papers (2024-09-22T23:43:45Z) - Discover-then-Name: Task-Agnostic Concept Bottlenecks via Automated Concept Discovery [52.498055901649025]
Concept Bottleneck Models (CBMs) have been proposed to address the 'black-box' problem of deep neural networks.
We propose a novel CBM approach -- called Discover-then-Name-CBM (DN-CBM) -- that inverts the typical paradigm.
Our concept extraction strategy is efficient, since it is agnostic to the downstream task, and uses concepts already known to the model.
arXiv Detail & Related papers (2024-07-19T17:50:11Z) - Concept Bottleneck Models Without Predefined Concepts [26.156636891713745]
We introduce an input-dependent concept selection mechanism that ensures only a small subset of concepts is used across all classes.
We show that our approach improves downstream performance and narrows the performance gap to black-box models.
arXiv Detail & Related papers (2024-07-04T13:34:50Z) - A Concept-Based Explainability Framework for Large Multimodal Models [52.37626977572413]
We propose a dictionary learning based approach, applied to the representation of tokens.
We show that these concepts are well semantically grounded in both vision and text.
We show that the extracted multimodal concepts are useful to interpret representations of test samples.
arXiv Detail & Related papers (2024-06-12T10:48:53Z) - Improving Intervention Efficacy via Concept Realignment in Concept Bottleneck Models [57.86303579812877]
Concept Bottleneck Models (CBMs) ground image classification on human-understandable concepts to allow for interpretable model decisions.
Existing approaches often require numerous human interventions per image to achieve strong performances.
We introduce a trainable concept realignment intervention module, which leverages concept relations to realign concept assignments post-intervention.
arXiv Detail & Related papers (2024-05-02T17:59:01Z) - Understanding Multimodal Deep Neural Networks: A Concept Selection View [29.08342307127578]
Concept-based models map the black-box visual representations extracted by deep neural networks onto a set of human-understandable concepts.
We propose a two-stage Concept Selection Model (CSM) to mine core concepts without introducing any human priors.
Our approach achieves comparable performance to end-to-end black-box models.
arXiv Detail & Related papers (2024-04-13T11:06:49Z) - Separable Multi-Concept Erasure from Diffusion Models [52.51972530398691]
We propose a Separable Multi-concept Eraser (SepME) to eliminate unsafe concepts from large-scale diffusion models.
The latter separates optimizable model weights, making each weight increment correspond to a specific concept erasure.
Extensive experiments indicate the efficacy of our approach in eliminating concepts, preserving model performance, and offering flexibility in the erasure or recovery of various concepts.
arXiv Detail & Related papers (2024-02-03T11:10:57Z) - ConcEPT: Concept-Enhanced Pre-Training for Language Models [57.778895980999124]
ConcEPT aims to infuse conceptual knowledge into pre-trained language models.
It exploits external entity concept prediction to predict the concepts of entities mentioned in the pre-training contexts.
Results of experiments show that ConcEPT gains improved conceptual knowledge with concept-enhanced pre-training.
arXiv Detail & Related papers (2024-01-11T05:05:01Z) - Auxiliary Losses for Learning Generalizable Concept-based Models [5.4066453042367435]
Concept Bottleneck Models (CBMs) have gained popularity since their introduction.
CBMs essentially limit the latent space of a model to human-understandable high-level concepts.
We propose cooperative-Concept Bottleneck Model (coop-CBM) to overcome the performance trade-off.
arXiv Detail & Related papers (2023-11-18T15:50:07Z) - I saw, I conceived, I concluded: Progressive Concepts as Bottlenecks [2.9398911304923447]
Concept bottleneck models (CBMs) provide explainability and intervention during inference by correcting predicted, intermediate concepts.
This makes CBMs attractive for high-stakes decision-making.
We take the quality assessment of fetal ultrasound scans as a real-life use case for CBM decision support in healthcare.
arXiv Detail & Related papers (2022-11-19T09:31:19Z) - Concept Gradient: Concept-based Interpretation Without Linear Assumption [77.96338722483226]
Concept Activation Vector (CAV) relies on learning a linear relation between some latent representation of a given model and concepts.
We proposed Concept Gradient (CG), extending concept-based interpretation beyond linear concept functions.
We demonstrated CG outperforms CAV in both toy examples and real world datasets.
arXiv Detail & Related papers (2022-08-31T17:06:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.