SpaLLM-Guard: Pairing SMS Spam Detection Using Open-source and Commercial LLMs
- URL: http://arxiv.org/abs/2501.04985v1
- Date: Thu, 09 Jan 2025 06:00:08 GMT
- Title: SpaLLM-Guard: Pairing SMS Spam Detection Using Open-source and Commercial LLMs
- Authors: Muhammad Salman, Muhammad Ikram, Nardine Basta, Mohamed Ali Kaafar,
- Abstract summary: We evaluate the potential of large language models (LLMs), both open-source and commercial, for SMS spam detection.
We compare their performance across zero-shot, few-shot, fine-tuning, and chain-of-thought prompting approaches.
Fine-tuning emerges as the most effective strategy, with Mixtral achieving 98.6% accuracy and a balanced false positive and false negative rate below 2%.
- Score: 1.3198171962008958
- License:
- Abstract: The increasing threat of SMS spam, driven by evolving adversarial techniques and concept drift, calls for more robust and adaptive detection methods. In this paper, we evaluate the potential of large language models (LLMs), both open-source and commercial, for SMS spam detection, comparing their performance across zero-shot, few-shot, fine-tuning, and chain-of-thought prompting approaches. Using a comprehensive dataset of SMS messages, we assess the spam detection capabilities of prominent LLMs such as GPT-4, DeepSeek, LLAMA-2, and Mixtral. Our findings reveal that while zero-shot learning provides convenience, it is unreliable for effective spam detection. Few-shot learning, particularly with carefully selected examples, improves detection but exhibits variability across models. Fine-tuning emerges as the most effective strategy, with Mixtral achieving 98.6% accuracy and a balanced false positive and false negative rate below 2%, meeting the criteria for robust spam detection. Furthermore, we explore the resilience of these models to adversarial attacks, finding that fine-tuning significantly enhances robustness against both perceptible and imperceptible manipulations. Lastly, we investigate the impact of concept drift and demonstrate that fine-tuned LLMs, especially when combined with few-shot learning, can mitigate its effects, maintaining high performance even on evolving spam datasets. This study highlights the importance of fine-tuning and tailored learning strategies to deploy LLMs effectively for real-world SMS spam detection
Related papers
- Can LLM Prompting Serve as a Proxy for Static Analysis in Vulnerability Detection [13.403316050809151]
Large language models (LLMs) have shown limited ability on applied tasks such as vulnerability detection.
We propose a prompting strategy that integrates natural language descriptions of vulnerabilities with a contrastive chain-of-thought reasoning approach.
arXiv Detail & Related papers (2024-12-16T18:08:14Z) - Intent Detection in the Age of LLMs [3.755082744150185]
Intent detection is a critical component of task-oriented dialogue systems (TODS)
Traditional approaches relied on computationally efficient supervised sentence transformer encoder models.
The emergence of generative large language models (LLMs) with intrinsic world knowledge presents new opportunities to address these challenges.
arXiv Detail & Related papers (2024-10-02T15:01:55Z) - Exploring Automatic Cryptographic API Misuse Detection in the Era of LLMs [60.32717556756674]
This paper introduces a systematic evaluation framework to assess Large Language Models in detecting cryptographic misuses.
Our in-depth analysis of 11,940 LLM-generated reports highlights that the inherent instabilities in LLMs can lead to over half of the reports being false positives.
The optimized approach achieves a remarkable detection rate of nearly 90%, surpassing traditional methods and uncovering previously unknown misuses in established benchmarks.
arXiv Detail & Related papers (2024-07-23T15:31:26Z) - ExplainableDetector: Exploring Transformer-based Language Modeling Approach for SMS Spam Detection with Explainability Analysis [2.849988619791745]
The number of SMS spam has expanded significantly in recent years.
The unstructured format of SMS data creates significant challenges for SMS spam detection.
We employ optimized and fine-tuned transformer-based Large Language Models (LLMs) to solve the problem of spam message detection.
arXiv Detail & Related papers (2024-05-12T11:42:05Z) - SpamDam: Towards Privacy-Preserving and Adversary-Resistant SMS Spam Detection [2.0355793807035094]
SpamDam is a SMS spam detection framework designed to overcome key challenges in detecting and understanding SMS spam.
We have compiled over 76K SMS spam messages from Twitter and Weibo between 2018 and 2023, forming the largest dataset of its kind.
We have rigorously tested the adversarial robustness of SMS spam detection models, introducing the novel reverse backdoor attack.
arXiv Detail & Related papers (2024-04-15T06:07:10Z) - Token-Level Adversarial Prompt Detection Based on Perplexity Measures
and Contextual Information [67.78183175605761]
Large Language Models are susceptible to adversarial prompt attacks.
This vulnerability underscores a significant concern regarding the robustness and reliability of LLMs.
We introduce a novel approach to detecting adversarial prompts at a token level.
arXiv Detail & Related papers (2023-11-20T03:17:21Z) - Can LLMs Express Their Uncertainty? An Empirical Evaluation of Confidence Elicitation in LLMs [60.61002524947733]
Previous confidence elicitation methods rely on white-box access to internal model information or model fine-tuning.
This leads to a growing need to explore the untapped area of black-box approaches for uncertainty estimation.
We define a systematic framework with three components: prompting strategies for eliciting verbalized confidence, sampling methods for generating multiple responses, and aggregation techniques for computing consistency.
arXiv Detail & Related papers (2023-06-22T17:31:44Z) - MGTBench: Benchmarking Machine-Generated Text Detection [54.81446366272403]
This paper proposes the first benchmark framework for MGT detection against powerful large language models (LLMs)
We show that a larger number of words in general leads to better performance and most detection methods can achieve similar performance with much fewer training samples.
Our findings indicate that the model-based detection methods still perform well in the text attribution task.
arXiv Detail & Related papers (2023-03-26T21:12:36Z) - Deep convolutional forest: a dynamic deep ensemble approach for spam
detection in text [219.15486286590016]
This paper introduces a dynamic deep ensemble model for spam detection that adjusts its complexity and extracts features automatically.
As a result, the model achieved high precision, recall, f1-score and accuracy of 98.38%.
arXiv Detail & Related papers (2021-10-10T17:19:37Z) - Robust Spammer Detection by Nash Reinforcement Learning [64.80986064630025]
We develop a minimax game where the spammers and spam detectors compete with each other on their practical goals.
We show that an optimization algorithm can reliably find an equilibrial detector that can robustly prevent spammers with any mixed spamming strategies from attaining their practical goal.
arXiv Detail & Related papers (2020-06-10T21:18:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.