論文の概要: UAV-VLA: Vision-Language-Action System for Large Scale Aerial Mission Generation
- arxiv url: http://arxiv.org/abs/2501.05014v1
- Date: Thu, 09 Jan 2025 07:15:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-10 13:59:50.366001
- Title: UAV-VLA: Vision-Language-Action System for Large Scale Aerial Mission Generation
- Title(参考訳): UAV-VLA:大規模空中ミッション生成のための視線制御システム
- Authors: Oleg Sautenkov, Yasheerah Yaqoot, Artem Lykov, Muhammad Ahsan Mustafa, Grik Tadevosyan, Aibek Akhmetkazy, Miguel Altamirano Cabrera, Mikhail Martynov, Sausar Karaf, Dzmitry Tsetserukou,
- Abstract要約: UAV-VLA (Visual-Language-Action) は、空中ロボットとの通信を容易にするためのツールである。
衛星画像処理をビジュアル言語モデル(VLM)と統合し、GPTの強力な能力により、UAV-VLAはユーザーが一般的な飛行経路と行動計画を作成することができる。
- 参考スコア(独自算出の注目度): 1.8742629471785477
- License:
- Abstract: The UAV-VLA (Visual-Language-Action) system is a tool designed to facilitate communication with aerial robots. By integrating satellite imagery processing with the Visual Language Model (VLM) and the powerful capabilities of GPT, UAV-VLA enables users to generate general flight paths-and-action plans through simple text requests. This system leverages the rich contextual information provided by satellite images, allowing for enhanced decision-making and mission planning. The combination of visual analysis by VLM and natural language processing by GPT can provide the user with the path-and-action set, making aerial operations more efficient and accessible. The newly developed method showed the difference in the length of the created trajectory in 22% and the mean error in finding the objects of interest on a map in 34.22 m by Euclidean distance in the K-Nearest Neighbors (KNN) approach.
- Abstract(参考訳): UAV-VLA (Visual-Language-Action) は、空中ロボットとの通信を容易にするためのツールである。
衛星画像処理をビジュアル言語モデル(VLM)と統合し、GPTの強力な能力により、UAV-VLAは単純なテキスト要求によって一般的な飛行経路と行動計画を生成することができる。
このシステムは、衛星画像が提供するリッチなコンテキスト情報を活用し、意思決定とミッション計画の強化を可能にする。
VLMによる視覚分析とGPTによる自然言語処理の組み合わせは、ユーザに対してパス・アンド・アクションセットを提供し、航空操作をより効率的かつアクセスしやすいものにする。
新たに開発した手法では,K-Nearest Neighbors (KNN) アプローチにおいて,34.22mの地図上の対象物の平均誤差と,K-Nearest Neighbors (KNN) アプローチにおけるユークリッド距離の差を示した。
関連論文リスト
- Aerial Vision-and-Language Navigation via Semantic-Topo-Metric Representation Guided LLM Reasoning [48.33405770713208]
本稿では,大規模言語モデル(LLM)をアクション予測のエージェントとして導入する,航空VLNタスクのエンドツーエンドフレームワークを提案する。
我々は, LLMの空間的推論能力を高めるために, セマンティック・トポ・メトリック表現(STMR)を開発した。
実環境およびシミュレーション環境で行った実験は,本手法の有効性とロバスト性を実証した。
論文 参考訳(メタデータ) (2024-10-11T03:54:48Z) - Towards Realistic UAV Vision-Language Navigation: Platform, Benchmark, and Methodology [38.2096731046639]
UAV視覚言語ナビゲーションにおける最近の取り組みは、主に地上ベースのVLN設定を採用する。
プラットフォーム,ベンチマーク,方法論という3つの観点からのソリューションを提案する。
論文 参考訳(メタデータ) (2024-10-09T17:29:01Z) - Affordances-Oriented Planning using Foundation Models for Continuous Vision-Language Navigation [64.84996994779443]
本稿では,連続視覚言語ナビゲーション(VLN)タスクのためのAffordances-Oriented Plannerを提案する。
我々のAO-Plannerは、様々な基礎モデルを統合して、アベイランス指向の低レベルな動き計画とハイレベルな意思決定を実現する。
挑戦的なR2R-CEデータセットとRxR-CEデータセットの実験は、AO-Plannerが最先端のゼロショットのパフォーマンスを達成したことを示している。
論文 参考訳(メタデータ) (2024-07-08T12:52:46Z) - LangNav: Language as a Perceptual Representation for Navigation [63.90602960822604]
視覚・言語ナビゲーション(VLN)における知覚表現としての言語の利用について検討する。
提案手法では,画像キャプションや物体検出に市販の視覚システムを用いて,エージェントのエゴセントリックなパノラマビューを各ステップで自然言語記述に変換する。
論文 参考訳(メタデータ) (2023-10-11T20:52:30Z) - BEVBert: Multimodal Map Pre-training for Language-guided Navigation [75.23388288113817]
視覚・言語ナビゲーション(VLN)における空間認識型マップベース事前学習パラダイムを提案する。
我々は,グローバルなトポロジカルマップにおけるナビゲーション依存性をモデル化しながら,不完全な観測を明示的に集約し,重複を取り除くための局所距離マップを構築した。
ハイブリッドマップをベースとして,マルチモーダルマップ表現を学習するための事前学習フレームワークを考案し,空間認識型クロスモーダル推論を強化し,言語誘導ナビゲーションの目標を導出する。
論文 参考訳(メタデータ) (2022-12-08T16:27:54Z) - Think Global, Act Local: Dual-scale Graph Transformer for
Vision-and-Language Navigation [87.03299519917019]
本稿では,2次元グラフ変換器 (DUET) を提案する。
我々は,グローバルな行動空間における効率的な探索を可能にするために,トポロジカルマップをオンザフライで構築する。
提案手法であるDUETは、目標指向の視覚・言語ナビゲーションベンチマークにおいて最先端の手法を著しく上回っている。
論文 参考訳(メタデータ) (2022-02-23T19:06:53Z) - Vision-Based UAV Self-Positioning in Low-Altitude Urban Environments [20.69412701553767]
無人航空機(UAV)は安定した位置決めのために衛星システムに依存している。
このような状況下では、視覚に基づく技術が代替手段として機能し、UAVの自己配置能力を確実にする。
本稿では,UAV自己配置タスク用に設計された最初の公開データセットであるDenseUAVを提案する。
論文 参考訳(メタデータ) (2022-01-23T07:18:55Z) - A Multi-UAV System for Exploration and Target Finding in Cluttered and
GPS-Denied Environments [68.31522961125589]
複雑なGPSを用いた複雑な環境において,UAVのチームが協調して目標を探索し,発見するための枠組みを提案する。
UAVのチームは自律的にナビゲートし、探索し、検出し、既知の地図で散らばった環境でターゲットを見つける。
その結果, 提案方式は, 時間的コスト, 調査対象地域の割合, 捜索・救助ミッションの成功率などの面で改善されていることがわかった。
論文 参考訳(メタデータ) (2021-07-19T12:54:04Z) - Towards Deep Learning Assisted Autonomous UAVs for Manipulation Tasks in
GPS-Denied Environments [10.02675366919811]
本稿では,屋外およびgps環境に大規模な3d構造物を組み立てる作業に主に焦点をあてる。
我々のフレームワークは、個々のモジュールのパフォーマンス解析を報告するために、指定されたUAV上にデプロイされる。
論文 参考訳(メタデータ) (2021-01-16T09:20:46Z) - UAV Path Planning using Global and Local Map Information with Deep
Reinforcement Learning [16.720630804675213]
本研究は, 深部強化学習(DRL)に基づく自律型UAV経路計画法を提案する。
我々は、UAVの目標は、データ収集(DH)への関心領域を調査することであり、UAVは分散IoT(Internet of Things)センサーデバイスからデータを収集することである。
環境の構造化マップ情報を活用することで、異なるミッションシナリオで同一のアーキテクチャを持つ二重深度Q-networks(DDQN)を訓練する。
論文 参考訳(メタデータ) (2020-10-14T09:59:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。