Continuous Knowledge-Preserving Decomposition for Few-Shot Continual Learning
- URL: http://arxiv.org/abs/2501.05017v2
- Date: Sun, 09 Mar 2025 05:21:19 GMT
- Title: Continuous Knowledge-Preserving Decomposition for Few-Shot Continual Learning
- Authors: Xiaojie Li, Yibo Yang, Jianlong Wu, Jie Liu, Yue Yu, Liqiang Nie, Min Zhang,
- Abstract summary: Few-shot class-incremental learning (FSCIL) involves learning new classes from limited data while retaining prior knowledge.<n>We propose Continuous Knowledge-Preserving Decomposition for FSCIL (CKPD-FSCIL), a framework that decomposes a model's weights into two parts.<n> Experiments on multiple benchmarks show that CKPD-FSCIL outperforms state-of-the-art methods.
- Score: 80.31842748505895
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Few-shot class-incremental learning (FSCIL) involves learning new classes from limited data while retaining prior knowledge, and often results in catastrophic forgetting. Existing methods either freeze backbone networks to preserve knowledge, which limits adaptability, or rely on additional modules or prompts, introducing inference overhead. To this end, we propose Continuous Knowledge-Preserving Decomposition for FSCIL (CKPD-FSCIL), a framework that decomposes a model's weights into two parts: one that compacts existing knowledge (knowledge-sensitive components) and another that carries redundant capacity to accommodate new abilities (redundant-capacity components). The decomposition is guided by a covariance matrix from replay samples, ensuring principal components align with classification abilities. During adaptation, we freeze the knowledge-sensitive components and only adapt the redundant-capacity components, fostering plasticity while minimizing interference without changing the architecture or increasing overhead. Additionally, CKPD introduces an adaptive layer selection strategy to identify layers with redundant capacity, dynamically allocating adapters. Experiments on multiple benchmarks show that CKPD-FSCIL outperforms state-of-the-art methods.
Related papers
- DUKAE: DUal-level Knowledge Accumulation and Ensemble for Pre-Trained Model-Based Continual Learning [19.684132921720945]
Pre-trained model-based continual learning (PTMCL) has garnered growing attention, as it enables more rapid acquisition of new knowledge.
We propose a method named DUal-level Knowledge Accumulation and Ensemble (DUKAE) that leverages both feature-level and decision-level knowledge accumulation.
Experiments on CIFAR-100, ImageNet-R, CUB-200, and Cars-196 datasets demonstrate the superior performance of our approach.
arXiv Detail & Related papers (2025-04-09T01:40:38Z) - Temporal-Difference Variational Continual Learning [89.32940051152782]
A crucial capability of Machine Learning models in real-world applications is the ability to continuously learn new tasks.
In Continual Learning settings, models often struggle to balance learning new tasks with retaining previous knowledge.
We propose new learning objectives that integrate the regularization effects of multiple previous posterior estimations.
arXiv Detail & Related papers (2024-10-10T10:58:41Z) - Dynamic Integration of Task-Specific Adapters for Class Incremental Learning [31.67570086108542]
Non-exemplar class Incremental Learning (NECIL) enables models to continuously acquire new classes without retraining from scratch and storing old task exemplars.
We propose a novel framework called Dynamic Integration of task-specific Adapters (DIA), which comprises two key components: Task-Specific Adapter Integration (TSAI) and Patch-Level Model Alignment.
arXiv Detail & Related papers (2024-09-23T13:01:33Z) - Learning Prompt-Enhanced Context Features for Weakly-Supervised Video
Anomaly Detection [37.99031842449251]
Video anomaly detection under weak supervision presents significant challenges.
We present a weakly supervised anomaly detection framework that focuses on efficient context modeling and enhanced semantic discriminability.
Our approach significantly improves the detection accuracy of certain anomaly sub-classes, underscoring its practical value and efficacy.
arXiv Detail & Related papers (2023-06-26T06:45:16Z) - Evolving Knowledge Mining for Class Incremental Segmentation [113.59611699693092]
Class Incremental Semantic (CISS) has been a trend recently due to its great significance in real-world applications.
We propose a novel method, Evolving kNowleDge minING, employing a frozen backbone.
We evaluate our method on two widely used benchmarks and consistently demonstrate new state-of-the-art performance.
arXiv Detail & Related papers (2023-06-03T07:03:15Z) - Hierarchical Deep Counterfactual Regret Minimization [53.86223883060367]
In this paper, we introduce the first hierarchical version of Deep CFR, an innovative method that boosts learning efficiency in tasks involving extensively large state spaces and deep game trees.
A notable advantage of HDCFR over previous works is its ability to facilitate learning with predefined (human) expertise and foster the acquisition of skills that can be transferred to similar tasks.
arXiv Detail & Related papers (2023-05-27T02:05:41Z) - Mitigating Catastrophic Forgetting in Task-Incremental Continual
Learning with Adaptive Classification Criterion [50.03041373044267]
We propose a Supervised Contrastive learning framework with adaptive classification criterion for Continual Learning.
Experiments show that CFL achieves state-of-the-art performance and has a stronger ability to overcome compared with the classification baselines.
arXiv Detail & Related papers (2023-05-20T19:22:40Z) - Multimodal Parameter-Efficient Few-Shot Class Incremental Learning [1.9220716793379256]
Few-Shot Class Incremental Learning (FSCIL) is a challenging continual learning task, where limited training examples are available during several learning sessions.
To succeed in this task, it is necessary to avoid over-fitting new classes caused by biased distributions in the few-shot training sets.
CPE-CLIP significantly improves FSCIL performance compared to state-of-the-art proposals while also drastically reducing the number of learnable parameters and training costs.
arXiv Detail & Related papers (2023-03-08T17:34:15Z) - Mitigating Forgetting in Online Continual Learning via Contrasting
Semantically Distinct Augmentations [22.289830907729705]
Online continual learning (OCL) aims to enable model learning from a non-stationary data stream to continuously acquire new knowledge as well as retain the learnt one.
Main challenge comes from the "catastrophic forgetting" issue -- the inability to well remember the learnt knowledge while learning the new ones.
arXiv Detail & Related papers (2022-11-10T05:29:43Z) - Dual-constrained Deep Semi-Supervised Coupled Factorization Network with
Enriched Prior [80.5637175255349]
We propose a new enriched prior based Dual-constrained Deep Semi-Supervised Coupled Factorization Network, called DS2CF-Net.
To ex-tract hidden deep features, DS2CF-Net is modeled as a deep-structure and geometrical structure-constrained neural network.
Our network can obtain state-of-the-art performance for representation learning and clustering.
arXiv Detail & Related papers (2020-09-08T13:10:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.