論文の概要: Hierarchical Decomposed Dual-domain Deep Learning for Sparse-View CT Reconstruction
- arxiv url: http://arxiv.org/abs/2501.05093v1
- Date: Thu, 09 Jan 2025 09:19:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-10 13:58:12.527841
- Title: Hierarchical Decomposed Dual-domain Deep Learning for Sparse-View CT Reconstruction
- Title(参考訳): Sparse-View CT 再構成のための階層型分割型デュアルドメイン深層学習
- Authors: Yoseob Han,
- Abstract要約: フィルタバックプロジェクションを用いた解析的再構成により, 厳密なストリーキングアーティファクトが得られた。
画像ドメインネットワークを用いたディープラーニング戦略は、ストリーキングアーティファクトを除去する際、顕著な性能を示した。
本研究は、スパースビューCT再構成のための理論的に正当化された深層学習手法を提供する。
- 参考スコア(独自算出の注目度): 2.2209333405427585
- License:
- Abstract: Objective: X-ray computed tomography employing sparse projection views has emerged as a contemporary technique to mitigate radiation dose. However, due to the inadequate number of projection views, an analytic reconstruction method utilizing filtered backprojection results in severe streaking artifacts. Recently, deep learning strategies employing image-domain networks have demonstrated remarkable performance in eliminating the streaking artifact caused by analytic reconstruction methods with sparse projection views. Nevertheless, it is difficult to clarify the theoretical justification for applying deep learning to sparse view CT reconstruction, and it has been understood as restoration by removing image artifacts, not reconstruction. Approach: By leveraging the theory of deep convolutional framelets and the hierarchical decomposition of measurement, this research reveals the constraints of conventional image- and projection-domain deep learning methodologies, subsequently, the research proposes a novel dual-domain deep learning framework utilizing hierarchical decomposed measurements. Specifically, the research elucidates how the performance of the projection-domain network can be enhanced through a low-rank property of deep convolutional framelets and a bowtie support of hierarchical decomposed measurement in the Fourier domain. Main Results: This study demonstrated performance improvement of the proposed framework based on the low-rank property, resulting in superior reconstruction performance compared to conventional analytic and deep learning methods. Significance: By providing a theoretically justified deep learning approach for sparse-view CT reconstruction, this study not only offers a superior alternative to existing methods but also opens new avenues for research in medical imaging.
- Abstract(参考訳): 目的: スパースプロジェクションビューを用いたX線CTが, 放射線線量低減のための現代技術として出現している。
しかし, プロジェクションビューが不十分なため, フィルタバックプロジェクションを用いた解析的再構成により, 厳密なストリーキングアーチファクトが生じる。
近年,画像ドメインネットワークを用いた深層学習戦略は,解析的再構成手法による歪曲アーチファクトの除去に顕著な性能を示した。
しかし, 画像再構成に深層学習を適用した理論的正当性を明らかにすることは困難であり, 再建ではなく, 画像アーティファクトの除去による復元と解釈されている。
アプローチ: 深層畳み込みフレームレットの理論と階層的な計測の分解を利用して, 従来の画像領域および投影領域の深層学習手法の制約を明らかにする。
具体的には, プロジェクション・ドメイン・ネットワークの性能を, 深部畳み込みフレームレットの低ランク特性と, フーリエ領域における階層的分解測定のボウタイ支持により向上させる方法について検討した。
主な結果: 本研究は, 低ランク性に基づくフレームワークの性能向上を実証し, 従来の解析・深層学習法と比較して, 再構築性能が向上することを示した。
意義:Sparse-view CT再構成のための理論的に正当化されたディープラーニングアプローチを提供することにより,本研究は既存の方法よりも優れた代替手段を提供するだけでなく,医用画像研究のための新たな道を開く。
関連論文リスト
- CoCPF: Coordinate-based Continuous Projection Field for Ill-Posed Inverse Problem in Imaging [78.734927709231]
スパース・ビュー・コンピュート・トモグラフィー(SVCT)の再構成は,スパース・サンプリングによるCT画像の取得を目的としている。
暗黙的な神経表現(INR)技術は、不備のため、その分野に「かなりの穴」(すなわち、未モデル化空間)を残し、準最適結果をもたらす可能性がある。
SVCT再構成のためのホールフリー表現場を構築することを目的としたコーディネート型連続射影場(CoCPF)を提案する。
論文 参考訳(メタデータ) (2024-06-21T08:38:30Z) - MVMS-RCN: A Dual-Domain Unfolding CT Reconstruction with Multi-sparse-view and Multi-scale Refinement-correction [9.54126979075279]
スパースビューCTは、低線量へのプロジェクションビューの数を減少させる。
既存の深層学習(DL)と深部展開スパルスCT再構成法では,プロジェクションデータを完全には利用していない。
本稿では,スパルス・ビュー・トモグラフィー再構成のための数学的アイデアと最適DLイメージングアルゴリズムの設計を目的とする。
論文 参考訳(メタデータ) (2024-05-27T13:01:25Z) - Deep Radon Prior: A Fully Unsupervised Framework for Sparse-View CT
Reconstruction [6.509941446269504]
提案するフレームワークはデータセットを必要とせず、優れた解釈可能性と一般化能力を示す。
実験結果から,提案手法は画像アーチファクトを効果的に抑制しつつ,詳細な画像を生成することができることが示された。
論文 参考訳(メタデータ) (2023-12-30T04:11:08Z) - Enhancing Low-dose CT Image Reconstruction by Integrating Supervised and
Unsupervised Learning [13.17680480211064]
X線CT画像再構成のためのハイブリッド教師なし学習フレームワークを提案する。
提案された各訓練ブロックは、決定論的MBIRソルバとニューラルネットワークで構成されている。
限られた訓練データを用いた低用量CT画像再構成における本学習ハイブリッドモデルの有効性を実証する。
論文 参考訳(メタデータ) (2023-11-19T20:23:59Z) - Orientation-Shared Convolution Representation for CT Metal Artifact
Learning [63.67718355820655]
X線CT(CT)スキャン中、患者を乗せた金属インプラントは、しばしば有害なアーティファクトに繋がる。
既存のディープラーニングベースの手法は、有望な再構築性能を得た。
本稿では,人工物の物理的事前構造に適応するために,配向型畳み込み表現戦略を提案する。
論文 参考訳(メタデータ) (2022-12-26T13:56:12Z) - Multi-Channel Convolutional Analysis Operator Learning for Dual-Energy
CT Reconstruction [108.06731611196291]
我々は,多チャンネル畳み込み解析演算子学習法(MCAOL)を開発した。
本研究では,低エネルギー,高エネルギーで減衰画像を共同で再構成する最適化手法を提案する。
論文 参考訳(メタデータ) (2022-03-10T14:22:54Z) - Deep Unrolled Recovery in Sparse Biological Imaging [62.997667081978825]
ディープ・アルゴリズム・アンローリング(Deep Algorithm Unrolling)は、反復的アルゴリズムの解釈可能性と教師付きディープラーニングの性能向上を組み合わせたディープ・アーキテクチャを開発するためのモデルベースのアプローチである。
この枠組みは生体イメージングの応用に適しており、測定プロセスを記述する物理モデルが存在し、回復すべき情報がしばしば高度に構造化されている。
論文 参考訳(メタデータ) (2021-09-28T20:22:44Z) - Adversarial Domain Feature Adaptation for Bronchoscopic Depth Estimation [111.89519571205778]
そこで本研究では,深度推定のためのドメイン適応手法を提案する。
提案する2段階構造は,まず,ラベル付き合成画像を用いた深度推定ネットワークを教師付きで訓練する。
実験の結果,提案手法は実画像上でのネットワーク性能をかなりの差で向上させることがわかった。
論文 参考訳(メタデータ) (2021-09-24T08:11:34Z) - Implicit Subspace Prior Learning for Dual-Blind Face Restoration [66.67059961379923]
新しい暗黙的サブスペース事前学習(ISPL)フレームワークが、二重盲顔復元の一般的な解決策として提案されている。
実験の結果,既存の最先端手法に対するISPLの認識歪改善が顕著であった。
論文 参考訳(メタデータ) (2020-10-12T08:04:24Z) - Limited View Tomographic Reconstruction Using a Deep Recurrent Framework
with Residual Dense Spatial-Channel Attention Network and Sinogram
Consistency [25.16002539710169]
本稿では,同じブロックを複数回積み重ねる新しい繰り返し再構成フレームワークを提案する。
本研究では, 再帰的なブロックの中間出力のシングラムと一致するように, リカレント・フレームワークにインターリーブされたシングラム整合層を構築した。
本アルゴリズムは, 狭角化と狭角化の両面において, 既存の最先端のニューラル手法よりも一貫した, 顕著な改善を実現している。
論文 参考訳(メタデータ) (2020-09-03T16:39:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。