論文の概要: Advancing ALS Applications with Large-Scale Pre-training: Dataset Development and Downstream Assessment
- arxiv url: http://arxiv.org/abs/2501.05095v1
- Date: Thu, 09 Jan 2025 09:21:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-10 14:00:25.810665
- Title: Advancing ALS Applications with Large-Scale Pre-training: Dataset Development and Downstream Assessment
- Title(参考訳): 大規模事前学習によるALSアプリケーションの改善:データセット開発と下流アセスメント
- Authors: Haoyi Xiu, Xin Liu, Taehoon Kim, Kyoung-Sook Kim,
- Abstract要約: 事前訓練と微調整のパラダイムは、衛星リモートセンシングの応用に革命をもたらした。
大規模なALSポイントクラウドデータセットを構築し、下流アプリケーションへの影響を評価する。
以上の結果から,事前学習したモデルは,ダウンストリームタスク全体において,スクラッチよりも有意に優れていた。
- 参考スコア(独自算出の注目度): 6.606615641354963
- License:
- Abstract: The pre-training and fine-tuning paradigm has revolutionized satellite remote sensing applications. However, this approach remains largely underexplored for airborne laser scanning (ALS), an important technology for applications such as forest management and urban planning. In this study, we address this gap by constructing a large-scale ALS point cloud dataset and evaluating its impact on downstream applications. Our dataset comprises ALS point clouds collected across the contiguous United States, provided by the United States Geological Survey's 3D Elevation Program. To ensure efficient data collection while capturing diverse land cover and terrain types, we introduce a geospatial sampling method that selects point cloud tiles based on land cover maps and digital elevation models. As a baseline self-supervised learning model, we adopt BEV-MAE, a state-of-the-art masked autoencoder for 3D outdoor point clouds, and pre-train it on the constructed dataset. The pre-trained models are subsequently fine-tuned for downstream tasks, including tree species classification, terrain scene recognition, and point cloud semantic segmentation. Our results show that the pre-trained models significantly outperform their scratch counterparts across all downstream tasks, demonstrating the transferability of the representations learned from the proposed dataset. Furthermore, we observe that scaling the dataset using our geospatial sampling method consistently enhances performance, whereas pre-training on datasets constructed with random sampling fails to achieve similar improvements. These findings highlight the utility of the constructed dataset and the effectiveness of our sampling strategy in the pre-training and fine-tuning paradigm. The source code and pre-trained models will be made publicly available at \url{https://github.com/martianxiu/ALS_pretraining}.
- Abstract(参考訳): 事前訓練と微調整のパラダイムは、衛星リモートセンシングの応用に革命をもたらした。
しかし、この手法は、森林管理や都市計画といった重要な応用技術である空中レーザー走査(ALS)の分野では、いまだに過小評価されていない。
本研究では、大規模なALSポイントクラウドデータセットを構築し、下流アプリケーションへの影響を評価することにより、このギャップに対処する。
このデータセットは,米国地質調査所の3次元標高測定プログラムによって収集された,大陸横断のALS点雲から構成される。
多様な土地被覆や地形を把握しながら効率的なデータ収集を実現するため,ランドカバーマップとデジタル標高モデルに基づいて点雲タイルを選択する地理空間サンプリング手法を提案する。
ベースラインの自己教師型学習モデルとして、3次元屋外点雲のための最先端のマスク付きオートエンコーダであるBEV-MAEを採用し、構築されたデータセットで事前学習する。
事前訓練されたモデルは、木種分類、地形シーン認識、ポイントクラウドセマンティックセグメンテーションなどの下流タスクのために微調整される。
提案したデータセットから学習した表現の転送可能性を示す結果として,事前学習したモデルは,下流のタスク全体において,スクラッチのスクラッチよりも有意に優れていた。
さらに,地空間サンプリング手法を用いてデータセットのスケーリングを行うことでパフォーマンスが向上するのに対して,ランダムサンプリングで構築したデータセットの事前トレーニングでは,同様の改善が得られなかった。
これらの結果は,構築したデータセットの有用性と,事前学習および微調整のパラダイムにおけるサンプリング戦略の有効性を強調した。
ソースコードと事前トレーニングされたモデルは、 \url{https://github.com/martianxiu/ALS_pretraining}で公開される。
関連論文リスト
- OPUS: Occupancy Prediction Using a Sparse Set [64.60854562502523]
学習可能なクエリの集合を用いて、占有された場所とクラスを同時に予測するフレームワークを提案する。
OPUSには、モデルパフォーマンスを高めるための非自明な戦略が組み込まれている。
最も軽量なモデルではOcc3D-nuScenesデータセットの2倍 FPS に優れたRayIoUが得られる一方、最も重いモデルは6.1 RayIoUを上回ります。
論文 参考訳(メタデータ) (2024-09-14T07:44:22Z) - Simulation-Enhanced Data Augmentation for Machine Learning Pathloss
Prediction [9.664420734674088]
本稿では,機械学習パスロス予測のための新しいシミュレーション強化データ拡張手法を提案する。
本手法は,細胞被覆シミュレータから生成した合成データと,独立して収集した実世界のデータセットを統合する。
合成データの統合は、異なる環境におけるモデルの一般化可能性を大幅に向上させる。
論文 参考訳(メタデータ) (2024-02-03T00:38:08Z) - Foundation Models for Generalist Geospatial Artificial Intelligence [3.7002058945990415]
本稿では,大規模データに基づく基礎モデルの事前学習と微調整を効果的に行うための第1種フレームワークを提案する。
我々はこの枠組みを利用して、マルチスペクトル衛星画像の1TB以上を事前トレーニングしたトランスフォーマーベースの基礎モデルであるPrithviを開発した。
論文 参考訳(メタデータ) (2023-10-28T10:19:55Z) - Pushing the Limits of Pre-training for Time Series Forecasting in the
CloudOps Domain [54.67888148566323]
クラウドオペレーションドメインから,大規模時系列予測データセットを3つ導入する。
強力なゼロショットベースラインであり、モデルとデータセットサイズの両方において、さらなるスケーリングの恩恵を受けています。
これらのデータセットと結果を取得することは、古典的および深層学習のベースラインを事前訓練された方法と比較した総合的なベンチマーク結果の集合である。
論文 参考訳(メタデータ) (2023-10-08T08:09:51Z) - Pre-training on Synthetic Driving Data for Trajectory Prediction [61.520225216107306]
軌道予測におけるデータ不足の問題を緩和するパイプラインレベルのソリューションを提案する。
我々は、駆動データを生成するためにHDマップ拡張とトラジェクトリ合成を採用し、それらを事前学習することで表現を学習する。
我々は、データ拡張と事前学習戦略の有効性を実証するための広範な実験を行う。
論文 参考訳(メタデータ) (2023-09-18T19:49:22Z) - Semi-supervised Learning from Street-View Images and OpenStreetMap for
Automatic Building Height Estimation [59.6553058160943]
本稿では,Mapillary SVIとOpenStreetMapのデータから建物の高さを自動的に推定する半教師付き学習(SSL)手法を提案する。
提案手法は, 平均絶対誤差(MAE)が約2.1mである建物の高さを推定する上で, 明らかな性能向上につながる。
予備結果は,低コストなVGIデータに基づく提案手法のスケールアップに向けた今後の取り組みを期待し,動機づけるものである。
論文 参考訳(メタデータ) (2023-07-05T18:16:30Z) - Exploring the Effectiveness of Dataset Synthesis: An application of
Apple Detection in Orchards [68.95806641664713]
本研究では,リンゴ樹の合成データセットを生成するための安定拡散2.1-baseの有用性について検討する。
我々は、現実世界のリンゴ検出データセットでリンゴを予測するために、YOLOv5mオブジェクト検出モデルを訓練する。
その結果、実世界の画像でトレーニングされたベースラインモデルと比較して、生成データでトレーニングされたモデルはわずかに性能が劣っていることがわかった。
論文 参考訳(メタデータ) (2023-06-20T09:46:01Z) - Embedding Earth: Self-supervised contrastive pre-training for dense land
cover classification [61.44538721707377]
本研究では,衛星画像の高可用性を活用するための自己監督型コントラスト事前学習法として,エンベディングアースを提案する。
提案手法による事前学習では, 25%の絶対mIoUが得られた。
学習した特徴は、異なる領域間で一般化され、提案した事前学習スキームの可能性を開放する。
論文 参考訳(メタデータ) (2022-03-11T16:14:14Z) - Vegetation Stratum Occupancy Prediction from Airborne LiDAR 3D Point
Clouds [5.7047887413125276]
本研究では,空中プラットフォームから取得した3次元点雲から植生成層域の占有度を推定する新しい深層学習手法を提案する。
我々のネットワークは、ピクセルワイドやポイントワイドアノテーションよりも簡単に生成できる円筒状のプロットに集約された値で重畳されている。
本手法は,視覚的および解釈可能な予測を同時に提供しながら,手工芸と深層学習のベースラインを精度で上回る。
論文 参考訳(メタデータ) (2021-12-27T09:33:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。