論文の概要: EquiBoost: An Equivariant Boosting Approach to Molecular Conformation Generation
- arxiv url: http://arxiv.org/abs/2501.05109v1
- Date: Thu, 09 Jan 2025 09:57:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-10 13:57:57.719789
- Title: EquiBoost: An Equivariant Boosting Approach to Molecular Conformation Generation
- Title(参考訳): EquiBoost: 分子コンフォーメーション生成における等価なブースティングアプローチ
- Authors: Yixuan Yang, Xingyu Fang, Zhaowen Cheng, Pengju Yan, Xiaolin Li,
- Abstract要約: 分子の3次元配座を反復的に洗練するために,複数の同変グラフ変換器を弱い学習者として積み重ねるモデルであるEquiBoostを提案する。
EquiBoostは拡散法よりも精度と効率のバランスが良いことを示す。
この研究は、特定のシナリオにおける拡散モデルの堅牢な代替となる可能性に光を当てる。
- 参考スコア(独自算出の注目度): 3.3034934547862935
- License:
- Abstract: Molecular conformation generation plays key roles in computational drug design. Recently developed deep learning methods, particularly diffusion models have reached competitive performance over traditional cheminformatical approaches. However, these methods are often time-consuming or require extra support from traditional methods. We propose EquiBoost, a boosting model that stacks several equivariant graph transformers as weak learners, to iteratively refine 3D conformations of molecules. Without relying on diffusion techniques, EquiBoost balances accuracy and efficiency more effectively than diffusion-based methods. Notably, compared to the previous state-of-the-art diffusion method, EquiBoost improves generation quality and preserves diversity, achieving considerably better precision of Average Minimum RMSD (AMR) on the GEOM datasets. This work rejuvenates boosting and sheds light on its potential to be a robust alternative to diffusion models in certain scenarios.
- Abstract(参考訳): 分子コンホメーション生成は、計算薬物設計において重要な役割を担っている。
近年の深層学習法,特に拡散モデルでは,従来の化学計算法に比べて競争性能が向上している。
しかし、これらの手法は、しばしば時間を要するか、あるいは伝統的な方法から追加の支援を必要とする。
分子の3次元配座を反復的に洗練するために,複数の同変グラフ変換器を弱い学習者として積み重ねるブースティングモデルであるEquiBoostを提案する。
拡散法を頼らずに、EquiBoostは拡散法よりも精度と効率のバランスをとる。
特に、従来の最先端拡散法と比較して、EquiBoostは生成品質を改善し、多様性を保ち、GEOMデータセット上の平均最小RMSD(AMR)の精度を大幅に向上させる。
この研究は、特定のシナリオにおける拡散モデルの堅牢な代替となる可能性に光を当てる。
関連論文リスト
- Heuristically Adaptive Diffusion-Model Evolutionary Strategy [1.8299322342860518]
拡散モデル(Diffusion Models)は、生成モデルにおいて重要な進歩を示す。
本研究は,拡散モデルと進化的アルゴリズムの基本的な関係を明らかにする。
我々のフレームワークは、進化的最適化プロセスにおいて、柔軟性、精度、制御性を高めたアルゴリズム上の大きな遷移を示す。
論文 参考訳(メタデータ) (2024-11-20T16:06:28Z) - Conditional Synthesis of 3D Molecules with Time Correction Sampler [58.0834973489875]
Time-Aware Conditional Synthesis (TACS) は拡散モデルにおける条件生成の新しい手法である。
適応的に制御されたプラグアンドプレイの"オンライン"ガイダンスを拡散モデルに統合し、サンプルを所望の特性に向けて駆動する。
論文 参考訳(メタデータ) (2024-11-01T12:59:25Z) - Improving Out-of-Distribution Robustness of Classifiers via Generative
Interpolation [56.620403243640396]
ディープニューラルネットワークは、独立かつ同一に分散されたデータ(すなわち、d)から学習する上で、優れたパフォーマンスを達成する。
しかし、アウト・オブ・ディストリビューション(OoD)データを扱う場合、その性能は著しく低下する。
多様なOoDサンプルを合成するために,複数のドメインから学習した生成モデルを融合するための生成補間法(Generative Interpolation)を開発した。
論文 参考訳(メタデータ) (2023-07-23T03:53:53Z) - Improving Sample Quality of Diffusion Models Using Self-Attention
Guidance [36.42984435784378]
自己注意誘導(SAG)は様々な拡散モデルの性能を向上させる。
SAGは拡散モデルが各領域に付随する領域のみを逆向きに曖昧にし、それに従って誘導する。
以上の結果から,SAGはADM, IDDPM, 安定拡散, DiTなど,様々な拡散モデルの性能を向上させることが示唆された。
論文 参考訳(メタデータ) (2022-10-03T13:50:58Z) - A Survey on Generative Diffusion Model [75.93774014861978]
拡散モデルは、深層生成モデルの新たなクラスである。
時間を要する反復生成過程や高次元ユークリッド空間への閉じ込めなど、いくつかの制限がある。
本調査では,拡散モデルの向上を目的とした高度な手法を多数提示する。
論文 参考訳(メタデータ) (2022-09-06T16:56:21Z) - How Much is Enough? A Study on Diffusion Times in Score-based Generative
Models [76.76860707897413]
現在のベストプラクティスは、フォワードダイナミクスが既知の単純なノイズ分布に十分に近づくことを確実にするために大きなTを提唱している。
本稿では, 理想とシミュレーションされたフォワードダイナミクスのギャップを埋めるために補助モデルを用いて, 標準的な逆拡散過程を導出する方法について述べる。
論文 参考訳(メタデータ) (2022-06-10T15:09:46Z) - Torsional Diffusion for Molecular Conformer Generation [28.225704750892795]
ねじれ拡散は、ねじれ角の空間で動作する新しい拡散フレームワークである。
薬物様分子の標準ベンチマークでは、ねじり拡散は優れたコンフォメーラーアンサンブルを生成する。
我々のモデルは、最初の一般化可能なボルツマン生成器を構築するために使われる正確な確率を与える。
論文 参考訳(メタデータ) (2022-06-01T04:30:41Z) - Equivariant Diffusion for Molecule Generation in 3D [74.289191525633]
この研究は、ユークリッド変換に同値な3次元の分子計算生成のための拡散モデルを導入する。
提案手法は, 従来の3次元分子生成法に比べて, 生成した試料の品質と訓練時の効率を著しく向上させる。
論文 参考訳(メタデータ) (2022-03-31T12:52:25Z) - GeoDiff: a Geometric Diffusion Model for Molecular Conformation
Generation [102.85440102147267]
分子配座予測のための新しい生成モデルGeoDiffを提案する。
GeoDiffは、既存の最先端のアプローチよりも優れているか、あるいは同等であることを示す。
論文 参考訳(メタデータ) (2022-03-06T09:47:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。