論文の概要: Domain-Incremental Semantic Segmentation for Autonomous Driving under Adverse Driving Conditions
- arxiv url: http://arxiv.org/abs/2501.05246v1
- Date: Thu, 09 Jan 2025 13:54:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-10 13:59:01.696851
- Title: Domain-Incremental Semantic Segmentation for Autonomous Driving under Adverse Driving Conditions
- Title(参考訳): 逆運転条件下における自律走行のためのドメイン・インクリメンタルセマンティックセマンティックセグメンテーション
- Authors: Shishir Muralidhara, René Schuster, Didier Stricker,
- Abstract要約: 我々は、プログレッシブ・セマンティック(PSS)と呼ばれるアーキテクチャに基づくドメイン増分学習手法を提案する。
PSSはタスクに依存しない、動的に成長するドメイン固有セグメンテーションモデルのコレクションである。
提案手法は, 有害運転条件の分類における一般化のレベルが異なる複数のデータセットを用いて, 広範囲に評価した。
- 参考スコア(独自算出の注目度): 14.2843647693986
- License:
- Abstract: Semantic segmentation for autonomous driving is an even more challenging task when faced with adverse driving conditions. Standard models trained on data recorded under ideal conditions show a deteriorated performance in unfavorable weather or illumination conditions. Fine-tuning on the new task or condition would lead to overwriting the previously learned information resulting in catastrophic forgetting. Adapting to the new conditions through traditional domain adaption methods improves the performance on the target domain at the expense of the source domain. Addressing these issues, we propose an architecture-based domain-incremental learning approach called Progressive Semantic Segmentation (PSS). PSS is a task-agnostic, dynamically growing collection of domain-specific segmentation models. The task of inferring the domain and subsequently selecting the appropriate module for segmentation is carried out using a collection of convolutional autoencoders. We extensively evaluate our proposed approach using several datasets at varying levels of granularity in the categorization of adverse driving conditions. Furthermore, we demonstrate the generalization of the proposed approach to similar and unseen domains.
- Abstract(参考訳): 自律運転のセマンティックセグメンテーションは、悪い運転条件に直面している場合、さらに困難な作業である。
理想的な条件下で記録されたデータに基づいて訓練された標準モデルは、好ましくない天候や照明条件で性能が劣化したことを示している。
新しいタスクや条件を微調整すると、事前に学習した情報が上書きされ、破滅的な忘れがもたらされる。
従来のドメイン適応手法による新しい条件への適応は、ソースドメインを犠牲にしてターゲットドメインのパフォーマンスを改善する。
これらの課題に対処するため,我々はプログレッシブセマンティックセマンティックセグメンテーション (PSS) と呼ばれるアーキテクチャに基づくドメイン増分学習手法を提案する。
PSSはタスクに依存しない、動的に成長するドメイン固有セグメンテーションモデルのコレクションである。
畳み込みオートエンコーダの集合を用いて、ドメインを推論し、次にセグメンテーションに適したモジュールを選択するタスクを実行する。
本研究では, 有害運転条件の分類における粒度の異なる複数のデータセットを用いて, 提案手法を広範に評価した。
さらに,提案手法の類似および未知領域への一般化を実証する。
関連論文リスト
- One-Shot Domain Adaptive and Generalizable Semantic Segmentation with
Class-Aware Cross-Domain Transformers [96.51828911883456]
セマンティックセグメンテーションのための教師なしのsim-to-realドメイン適応(UDA)は、シミュレーションデータに基づいて訓練されたモデルの実世界のテスト性能を改善することを目的としている。
従来のUDAは、適応のためのトレーニング中に利用可能なラベルのない実世界のサンプルが豊富にあると仮定することが多い。
実世界のデータサンプルが1つしか利用できない,一発の教師なしシム・トゥ・リアル・ドメイン適応(OSUDA)と一般化問題について検討する。
論文 参考訳(メタデータ) (2022-12-14T15:54:15Z) - Threshold-adaptive Unsupervised Focal Loss for Domain Adaptation of
Semantic Segmentation [25.626882426111198]
意味的セグメンテーションのための教師なしドメイン適応(UDA)は近年研究の注目を集めている。
本稿では,セマンティックセグメンテーションのための2段階エントロピーに基づくUDA手法を提案する。
本稿では,DeepLabV2を用いたSynTHIA-to-CityscapesとGTA5-to-Cityscapesにおける最先端の58.4%と59.6%のmIoUと,軽量BiSeNetを用いた競合性能を実現する。
論文 参考訳(メタデータ) (2022-08-23T03:48:48Z) - Labeling Where Adapting Fails: Cross-Domain Semantic Segmentation with
Point Supervision via Active Selection [81.703478548177]
セマンティックセグメンテーションに特化したトレーニングモデルは、大量のピクセル単位のアノテートデータを必要とする。
教師なしドメイン適応手法は、ラベル付きソースとラベルなしターゲットデータとの間の特徴分布の整合化を目的としている。
以前の研究は、対象データにスパース単一ピクセルアノテーションという形で、人間のインタラクションをこのプロセスに含めようと試みていた。
アクティブな選択による注釈付きポイントを用いた意味的セグメンテーションのための新しいドメイン適応フレームワークを提案する。
論文 参考訳(メタデータ) (2022-06-01T01:52:28Z) - The Norm Must Go On: Dynamic Unsupervised Domain Adaptation by
Normalization [10.274423413222763]
ドメイン適応は、学習したモデルを、ドメインシフトやデータ分散の変更など、新しいシナリオに適応するために不可欠である。
現在のアプローチは通常、シフトしたドメインから大量のラベル付きまたはラベルなしのデータを必要とする。
本稿では,この問題を解決するために動的教師なし適応(DUA)を提案する。
論文 参考訳(メタデータ) (2021-12-01T12:43:41Z) - Unsupervised Domain Adaptation for Semantic Segmentation via Low-level
Edge Information Transfer [27.64947077788111]
セマンティックセグメンテーションのための教師なしドメイン適応は、合成データに基づいて訓練されたモデルを実際の画像に適応させることを目的としている。
従来の特徴レベルの対数学習手法は、高レベルの意味的特徴に適応するモデルのみを考慮していた。
本稿では,ドメイン間ギャップが小さい低レベルエッジ情報を明示的に利用して意味情報の伝達をガイドする試みについて紹介する。
論文 参考訳(メタデータ) (2021-09-18T11:51:31Z) - Stagewise Unsupervised Domain Adaptation with Adversarial Self-Training
for Road Segmentation of Remote Sensing Images [93.50240389540252]
リモートセンシング画像からの道路セグメンテーションは、幅広い応用可能性を持つ課題である。
本稿では,この領域における領域シフト(DS)問題に対処するため,RoadDAと呼ばれる新たな段階的ドメイン適応モデルを提案する。
2つのベンチマーク実験の結果、RoadDAはドメインギャップを効率的に減らし、最先端の手法より優れていることが示された。
論文 参考訳(メタデータ) (2021-08-28T09:29:14Z) - Cross-Domain Grouping and Alignment for Domain Adaptive Semantic
Segmentation [74.3349233035632]
深層畳み込みニューラルネットワーク(CNN)内のソースドメインとターゲットドメインにセマンティックセグメンテーションネットワークを適用する既存の技術は、対象ドメイン自身や推定カテゴリ内のクラス間変異を考慮していない。
学習可能なクラスタリングモジュールと、クロスドメイングルーピングとアライメントと呼ばれる新しいドメイン適応フレームワークを導入する。
本手法はセマンティクスセグメンテーションにおける適応性能を一貫して向上させ,様々なドメイン適応設定において最先端を上回っている。
論文 参考訳(メタデータ) (2020-12-15T11:36:21Z) - Domain Adaptation in LiDAR Semantic Segmentation by Aligning Class
Distributions [9.581605678437032]
この研究は、LiDARセマンティックセグメンテーションモデルに対する教師なしドメイン適応の問題に対処する。
我々のアプローチは、現在の最先端のアプローチの上に新しいアイデアを結合し、新しい最先端の成果をもたらす。
論文 参考訳(メタデータ) (2020-10-23T08:52:15Z) - Domain Adversarial Fine-Tuning as an Effective Regularizer [80.14528207465412]
自然言語処理(NLP)では、下流タスクに転送される事前訓練された言語モデル(LM)が、最先端の結果を得るために最近示されている。
標準的な微調整は、事前トレーニング中にキャプチャされた汎用ドメイン表現を分解することができる。
本稿では,新しい正規化手法である After; 有効正規化器としてのドメイン・アダクショナル・ファイン・チューニングを提案する。
論文 参考訳(メタデータ) (2020-09-28T14:35:06Z) - Domain Adaptation for Semantic Parsing [68.81787666086554]
本稿では,ドメイン適応のための新しいセマンティクスを提案する。このセマンティクスでは,ソースドメインと比較して,対象ドメインのアノテーション付きデータがはるかに少ない。
我々のセマンティックな利点は、2段階の粗大なフレームワークから得ており、2段階の異なる正確な処理を提供できる。
ベンチマークデータセットの実験により、我々の手法はいくつかの一般的なドメイン適応戦略より一貫して優れていることが示された。
論文 参考訳(メタデータ) (2020-06-23T14:47:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。