Enhancing Plagiarism Detection in Marathi with a Weighted Ensemble of TF-IDF and BERT Embeddings for Low-Resource Language Processing
- URL: http://arxiv.org/abs/2501.05260v1
- Date: Thu, 09 Jan 2025 14:14:18 GMT
- Title: Enhancing Plagiarism Detection in Marathi with a Weighted Ensemble of TF-IDF and BERT Embeddings for Low-Resource Language Processing
- Authors: Atharva Mutsaddi, Aditya Choudhary,
- Abstract summary: It is crucial to design robust plagiarism detection systems tailored for low-resource languages.
This paper presents a method to enhance the accuracy of plagiarism detection for Marathi texts.
- Score: 0.0
- License:
- Abstract: Plagiarism involves using another person's work or concepts without proper attribution, presenting them as original creations. With the growing amount of data communicated in regional languages such as Marathi -- one of India's regional languages -- it is crucial to design robust plagiarism detection systems tailored for low-resource languages. Language models like Bidirectional Encoder Representations from Transformers (BERT) have demonstrated exceptional capability in text representation and feature extraction, making them essential tools for semantic analysis and plagiarism detection. However, the application of BERT for low-resource languages remains under-explored, particularly in the context of plagiarism detection. This paper presents a method to enhance the accuracy of plagiarism detection for Marathi texts using BERT sentence embeddings in conjunction with Term Frequency-Inverse Document Frequency (TF-IDF) feature representation. This approach effectively captures statistical, semantic, and syntactic aspects of text features through a weighted voting ensemble of machine learning models.
Related papers
- Detecting Document-level Paraphrased Machine Generated Content: Mimicking Human Writing Style and Involving Discourse Features [57.34477506004105]
Machine-generated content poses challenges such as academic plagiarism and the spread of misinformation.
We introduce novel methodologies and datasets to overcome these challenges.
We propose MhBART, an encoder-decoder model designed to emulate human writing style.
We also propose DTransformer, a model that integrates discourse analysis through PDTB preprocessing to encode structural features.
arXiv Detail & Related papers (2024-12-17T08:47:41Z) - MMCFND: Multimodal Multilingual Caption-aware Fake News Detection for Low-resource Indic Languages [0.4062349563818079]
We introduce the Multimodal Multilingual dataset for Indic Fake News Detection (MMIFND)
This meticulously curated dataset consists of 28,085 instances distributed across Hindi, Bengali, Marathi, Malayalam, Tamil, Gujarati and Punjabi.
We propose the Multimodal Caption-aware framework for Fake News Detection (MMCFND)
arXiv Detail & Related papers (2024-10-14T11:59:33Z) - Chain-of-Translation Prompting (CoTR): A Novel Prompting Technique for Low Resource Languages [0.4499833362998489]
Chain of Translation Prompting (CoTR) is a novel strategy designed to enhance the performance of language models in low-resource languages.
CoTR restructures prompts to first translate the input context from a low-resource language into a higher-resource language, such as English.
We demonstrate the effectiveness of this method through a case study on the low-resource Indic language Marathi.
arXiv Detail & Related papers (2024-09-06T17:15:17Z) - BERT-Enhanced Retrieval Tool for Homework Plagiarism Detection System [0.0]
We propose a plagiarized text data generation method based on GPT-3.5, which produces 32,927 pairs of text plagiarism detection datasets.
We also propose a plagiarism identification method based on Faiss with BERT with high efficiency and high accuracy.
Our experiments show that the performance of this model outperforms other models in several metrics, including 98.86%, 98.90%, 98.86%, and 0.9888 for Accuracy, Precision, Recall, and F1 Score.
arXiv Detail & Related papers (2024-04-01T12:20:34Z) - Paraphrase Identification with Deep Learning: A Review of Datasets and Methods [1.4325734372991794]
We investigate how the under-representation of certain paraphrase types in popular datasets affects the ability to detect plagiarism.
We introduce and validate a new refined typology for paraphrases.
We propose new directions for future research and dataset development to enhance AI-based paraphrase detection.
arXiv Detail & Related papers (2022-12-13T23:06:20Z) - Multilingual Extraction and Categorization of Lexical Collocations with
Graph-aware Transformers [86.64972552583941]
We put forward a sequence tagging BERT-based model enhanced with a graph-aware transformer architecture, which we evaluate on the task of collocation recognition in context.
Our results suggest that explicitly encoding syntactic dependencies in the model architecture is helpful, and provide insights on differences in collocation typification in English, Spanish and French.
arXiv Detail & Related papers (2022-05-23T16:47:37Z) - Detecting Text Formality: A Study of Text Classification Approaches [78.11745751651708]
This work proposes the first to our knowledge systematic study of formality detection methods based on statistical, neural-based, and Transformer-based machine learning methods.
We conducted three types of experiments -- monolingual, multilingual, and cross-lingual.
The study shows the overcome of Char BiLSTM model over Transformer-based ones for the monolingual and multilingual formality classification task.
arXiv Detail & Related papers (2022-04-19T16:23:07Z) - A Simple and Efficient Probabilistic Language model for Code-Mixed Text [0.0]
We present a simple probabilistic approach for building efficient word embedding for code-mixed text.
We examine its efficacy for the classification task using bidirectional LSTMs and SVMs.
arXiv Detail & Related papers (2021-06-29T05:37:57Z) - Unsupervised Domain Adaptation of a Pretrained Cross-Lingual Language
Model [58.27176041092891]
Recent research indicates that pretraining cross-lingual language models on large-scale unlabeled texts yields significant performance improvements.
We propose a novel unsupervised feature decomposition method that can automatically extract domain-specific features from the entangled pretrained cross-lingual representations.
Our proposed model leverages mutual information estimation to decompose the representations computed by a cross-lingual model into domain-invariant and domain-specific parts.
arXiv Detail & Related papers (2020-11-23T16:00:42Z) - Intrinsic Probing through Dimension Selection [69.52439198455438]
Most modern NLP systems make use of pre-trained contextual representations that attain astonishingly high performance on a variety of tasks.
Such high performance should not be possible unless some form of linguistic structure inheres in these representations, and a wealth of research has sprung up on probing for it.
In this paper, we draw a distinction between intrinsic probing, which examines how linguistic information is structured within a representation, and the extrinsic probing popular in prior work, which only argues for the presence of such information by showing that it can be successfully extracted.
arXiv Detail & Related papers (2020-10-06T15:21:08Z) - FILTER: An Enhanced Fusion Method for Cross-lingual Language
Understanding [85.29270319872597]
We propose an enhanced fusion method that takes cross-lingual data as input for XLM finetuning.
During inference, the model makes predictions based on the text input in the target language and its translation in the source language.
To tackle this issue, we propose an additional KL-divergence self-teaching loss for model training, based on auto-generated soft pseudo-labels for translated text in the target language.
arXiv Detail & Related papers (2020-09-10T22:42:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.