Multilingual Extraction and Categorization of Lexical Collocations with
Graph-aware Transformers
- URL: http://arxiv.org/abs/2205.11456v1
- Date: Mon, 23 May 2022 16:47:37 GMT
- Title: Multilingual Extraction and Categorization of Lexical Collocations with
Graph-aware Transformers
- Authors: Luis Espinosa-Anke and Alexander Shvets and Alireza Mohammadshahi and
James Henderson and Leo Wanner
- Abstract summary: We put forward a sequence tagging BERT-based model enhanced with a graph-aware transformer architecture, which we evaluate on the task of collocation recognition in context.
Our results suggest that explicitly encoding syntactic dependencies in the model architecture is helpful, and provide insights on differences in collocation typification in English, Spanish and French.
- Score: 86.64972552583941
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recognizing and categorizing lexical collocations in context is useful for
language learning, dictionary compilation and downstream NLP. However, it is a
challenging task due to the varying degrees of frozenness lexical collocations
exhibit. In this paper, we put forward a sequence tagging BERT-based model
enhanced with a graph-aware transformer architecture, which we evaluate on the
task of collocation recognition in context. Our results suggest that explicitly
encoding syntactic dependencies in the model architecture is helpful, and
provide insights on differences in collocation typification in English, Spanish
and French.
Related papers
- Improving Korean NLP Tasks with Linguistically Informed Subword
Tokenization and Sub-character Decomposition [6.767341847275751]
We introduce a morpheme-aware subword tokenization method that utilizes sub-character decomposition to address the challenges of applying Byte Pair.
Our approach balances linguistic accuracy with computational efficiency in Pre-trained Language Models (PLMs)
Our evaluations show that this technique achieves good performances overall, notably improving results in the syntactic task of NIKL-CoLA.
arXiv Detail & Related papers (2023-11-07T12:08:21Z) - Graph Adaptive Semantic Transfer for Cross-domain Sentiment
Classification [68.06496970320595]
Cross-domain sentiment classification (CDSC) aims to use the transferable semantics learned from the source domain to predict the sentiment of reviews in the unlabeled target domain.
We present Graph Adaptive Semantic Transfer (GAST) model, an adaptive syntactic graph embedding method that is able to learn domain-invariant semantics from both word sequences and syntactic graphs.
arXiv Detail & Related papers (2022-05-18T07:47:01Z) - To Augment or Not to Augment? A Comparative Study on Text Augmentation
Techniques for Low-Resource NLP [0.0]
We investigate three categories of text augmentation methodologies which perform changes on the syntax.
We compare them on part-of-speech tagging, dependency parsing and semantic role labeling for a diverse set of language families.
Our results suggest that the augmentation techniques can further improve over strong baselines based on mBERT.
arXiv Detail & Related papers (2021-11-18T10:52:48Z) - Transferring Semantic Knowledge Into Language Encoders [6.85316573653194]
We introduce semantic form mid-tuning, an approach for transferring semantic knowledge from semantic meaning representations into language encoders.
We show that this alignment can be learned implicitly via classification or directly via triplet loss.
Our method yields language encoders that demonstrate improved predictive performance across inference, reading comprehension, textual similarity, and other semantic tasks.
arXiv Detail & Related papers (2021-10-14T14:11:12Z) - Cross-lingual Text Classification with Heterogeneous Graph Neural
Network [2.6936806968297913]
Cross-lingual text classification aims at training a classifier on the source language and transferring the knowledge to target languages.
Recent multilingual pretrained language models (mPLM) achieve impressive results in cross-lingual classification tasks.
We propose a simple yet effective method to incorporate heterogeneous information within and across languages for cross-lingual text classification.
arXiv Detail & Related papers (2021-05-24T12:45:42Z) - Unsupervised Word Translation Pairing using Refinement based Point Set
Registration [8.568050813210823]
Cross-lingual alignment of word embeddings play an important role in knowledge transfer across languages.
Current unsupervised approaches rely on similarities in geometric structure of word embedding spaces across languages.
This paper proposes BioSpere, a novel framework for unsupervised mapping of bi-lingual word embeddings onto a shared vector space.
arXiv Detail & Related papers (2020-11-26T09:51:29Z) - VECO: Variable and Flexible Cross-lingual Pre-training for Language
Understanding and Generation [77.82373082024934]
We plug a cross-attention module into the Transformer encoder to explicitly build the interdependence between languages.
It can effectively avoid the degeneration of predicting masked words only conditioned on the context in its own language.
The proposed cross-lingual model delivers new state-of-the-art results on various cross-lingual understanding tasks of the XTREME benchmark.
arXiv Detail & Related papers (2020-10-30T03:41:38Z) - Unsupervised Distillation of Syntactic Information from Contextualized
Word Representations [62.230491683411536]
We tackle the task of unsupervised disentanglement between semantics and structure in neural language representations.
To this end, we automatically generate groups of sentences which are structurally similar but semantically different.
We demonstrate that our transformation clusters vectors in space by structural properties, rather than by lexical semantics.
arXiv Detail & Related papers (2020-10-11T15:13:18Z) - Probing Linguistic Features of Sentence-Level Representations in Neural
Relation Extraction [80.38130122127882]
We introduce 14 probing tasks targeting linguistic properties relevant to neural relation extraction (RE)
We use them to study representations learned by more than 40 different encoder architecture and linguistic feature combinations trained on two datasets.
We find that the bias induced by the architecture and the inclusion of linguistic features are clearly expressed in the probing task performance.
arXiv Detail & Related papers (2020-04-17T09:17:40Z) - Sign Language Transformers: Joint End-to-end Sign Language Recognition
and Translation [59.38247587308604]
We introduce a novel transformer based architecture that jointly learns Continuous Sign Language Recognition and Translation.
We evaluate the recognition and translation performances of our approaches on the challenging RWTH-PHOENIX-Weather-2014T dataset.
Our translation networks outperform both sign video to spoken language and gloss to spoken language translation models.
arXiv Detail & Related papers (2020-03-30T21:35:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.