Uncertainty-aware Knowledge Tracing
- URL: http://arxiv.org/abs/2501.05415v2
- Date: Tue, 21 Jan 2025 08:21:45 GMT
- Title: Uncertainty-aware Knowledge Tracing
- Authors: Weihua Cheng, Hanwen Du, Chunxiao Li, Ersheng Ni, Liangdi Tan, Tianqi Xu, Yongxin Ni,
- Abstract summary: Knowledge Tracing (KT) is crucial in education assessment, which focuses on depicting students' learning states and assessing students' mastery of subjects.
Previous research commonly adopts deterministic representation to capture students' knowledge states, which neglects the uncertainty during student interactions.
We propose an Uncertainty-Aware Knowledge Tracing model (UKT) which employs distribution embeddings to represent the uncertainty in student interactions.
- Score: 2.8931305033614816
- License:
- Abstract: Knowledge Tracing (KT) is crucial in education assessment, which focuses on depicting students' learning states and assessing students' mastery of subjects. With the rise of modern online learning platforms, particularly massive open online courses (MOOCs), an abundance of interaction data has greatly advanced the development of the KT technology. Previous research commonly adopts deterministic representation to capture students' knowledge states, which neglects the uncertainty during student interactions and thus fails to model the true knowledge state in learning process. In light of this, we propose an Uncertainty-Aware Knowledge Tracing model (UKT) which employs stochastic distribution embeddings to represent the uncertainty in student interactions, with a Wasserstein self-attention mechanism designed to capture the transition of state distribution in student learning behaviors. Additionally, we introduce the aleatory uncertainty-aware contrastive learning loss, which strengthens the model's robustness towards different types of uncertainties. Extensive experiments on six real-world datasets demonstrate that UKT not only significantly surpasses existing deep learning-based models in KT prediction, but also shows unique advantages in handling the uncertainty of student interactions.
Related papers
- SINKT: A Structure-Aware Inductive Knowledge Tracing Model with Large Language Model [64.92472567841105]
Knowledge Tracing (KT) aims to determine whether students will respond correctly to the next question.
Structure-aware Inductive Knowledge Tracing model with large language model (dubbed SINKT)
SINKT predicts the student's response to the target question by interacting with the student's knowledge state and the question representation.
arXiv Detail & Related papers (2024-07-01T12:44:52Z) - Improving the Reliability of Large Language Models by Leveraging
Uncertainty-Aware In-Context Learning [76.98542249776257]
Large-scale language models often face the challenge of "hallucination"
We introduce an uncertainty-aware in-context learning framework to empower the model to enhance or reject its output in response to uncertainty.
arXiv Detail & Related papers (2023-10-07T12:06:53Z) - Cognition-Mode Aware Variational Representation Learning Framework for
Knowledge Tracing [3.3036318543432417]
The Knowledge Tracing task plays a crucial role in personalized learning.
The KT task suffers from data sparsity, which makes it challenging to learn robust representations for students with few practice records.
We propose a Cognition-Mode Aware Variational Representation Learning Framework (CMVF) that can be directly applied to existing KT methods.
arXiv Detail & Related papers (2023-09-03T13:51:06Z) - Quiz-based Knowledge Tracing [61.9152637457605]
Knowledge tracing aims to assess individuals' evolving knowledge states according to their learning interactions.
QKT achieves state-of-the-art performance compared to existing methods.
arXiv Detail & Related papers (2023-04-05T12:48:42Z) - Selective Knowledge Sharing for Privacy-Preserving Federated
Distillation without A Good Teacher [52.2926020848095]
Federated learning is vulnerable to white-box attacks and struggles to adapt to heterogeneous clients.
This paper proposes a selective knowledge sharing mechanism for FD, termed Selective-FD.
arXiv Detail & Related papers (2023-04-04T12:04:19Z) - A Probabilistic Generative Model for Tracking Multi-Knowledge Concept
Mastery Probability [8.920928164556171]
We propose an inTerpretable pRobAbilistiC gEnerative moDel (TRACED) which can track students' numerous knowledge concepts mastery probabilities over time.
We conduct experiments with four real-world datasets in three knowledge-driven tasks.
The experimental results show that TRACED outperforms existing knowledge tracing methods in predicting students' future performance.
arXiv Detail & Related papers (2023-02-17T03:50:49Z) - Transition-Aware Multi-Activity Knowledge Tracing [2.9778695679660188]
Knowledge tracing aims to model student knowledge state given the student's sequence of learning activities.
Current KT solutions are not fit for modeling student learning from non-assessed learning activities.
We propose Transition-Aware Multi-activity Knowledge Tracing (TAMKOT)
arXiv Detail & Related papers (2023-01-26T21:49:24Z) - Differentiating Student Feedbacks for Knowledge Tracing [28.669001606806525]
We propose a framework to reweight the contribution of different responses based on their discrimination in training.
We also introduce an adaptive predictive score fusion technique to maintain accuracy on less discriminative responses.
arXiv Detail & Related papers (2022-12-16T13:55:07Z) - Interpretable Knowledge Tracing: Simple and Efficient Student Modeling
with Causal Relations [21.74631969428855]
Interpretable Knowledge Tracing (IKT) is a simple model that relies on three meaningful latent features.
IKT's prediction of future student performance is made using a Tree-Augmented Naive Bayes (TAN)
IKT has great potential for providing adaptive and personalized instructions with causal reasoning in real-world educational systems.
arXiv Detail & Related papers (2021-12-15T19:05:48Z) - Uncertainty as a Form of Transparency: Measuring, Communicating, and
Using Uncertainty [66.17147341354577]
We argue for considering a complementary form of transparency by estimating and communicating the uncertainty associated with model predictions.
We describe how uncertainty can be used to mitigate model unfairness, augment decision-making, and build trustworthy systems.
This work constitutes an interdisciplinary review drawn from literature spanning machine learning, visualization/HCI, design, decision-making, and fairness.
arXiv Detail & Related papers (2020-11-15T17:26:14Z) - Accurate and Robust Feature Importance Estimation under Distribution
Shifts [49.58991359544005]
PRoFILE is a novel feature importance estimation method.
We show significant improvements over state-of-the-art approaches, both in terms of fidelity and robustness.
arXiv Detail & Related papers (2020-09-30T05:29:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.