DASKT: A Dynamic Affect Simulation Method for Knowledge Tracing
- URL: http://arxiv.org/abs/2502.10396v1
- Date: Sat, 18 Jan 2025 10:02:10 GMT
- Title: DASKT: A Dynamic Affect Simulation Method for Knowledge Tracing
- Authors: Xinjie Sun, Kai Zhang, Qi Liu, Shuanghong Shen, Fei Wang, Yuxiang Guo, Enhong Chen,
- Abstract summary: Knowledge Tracing (KT) predicts future performance by students' historical computation, and understanding students' affective states can enhance the effectiveness of KT.<n>We propose Affect Dynamic Knowledge Tracing (DASKT) to explore the impact of various student affective states on their knowledge states.<n>Our research highlights a promising avenue for future studies, focusing on achieving high interpretability and accuracy.
- Score: 51.665582274736785
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Knowledge Tracing (KT) predicts future performance by modeling students' historical interactions, and understanding students' affective states can enhance the effectiveness of KT, thereby improving the quality of education. Although traditional KT values students' cognition and learning behaviors, efficient evaluation of students' affective states and their application in KT still require further exploration due to the non-affect-oriented nature of the data and budget constraints. To address this issue, we propose a computation-driven approach, Dynamic Affect Simulation Knowledge Tracing (DASKT), to explore the impact of various student affective states (such as frustration, concentration, boredom, and confusion) on their knowledge states. In this model, we first extract affective factors from students' non-affect-oriented behavioral data, then use clustering and spatiotemporal sequence modeling to accurately simulate students' dynamic affect changes when dealing with different problems. Subsequently, {\color{blue}we incorporate affect with time-series analysis to improve the model's ability to infer knowledge states over time and space.} Extensive experimental results on two public real-world educational datasets show that DASKT can achieve more reasonable knowledge states under the effect of students' affective states. Moreover, DASKT outperforms the most advanced KT methods in predicting student performance. Our research highlights a promising avenue for future KT studies, focusing on achieving high interpretability and accuracy.
Related papers
- AdvKT: An Adversarial Multi-Step Training Framework for Knowledge Tracing [64.79967583649407]
Knowledge Tracing (KT) monitors students' knowledge states and simulates their responses to question sequences.
Existing KT models typically follow a single-step training paradigm, which leads to significant error accumulation.
We propose a novel Adversarial Multi-Step Training Framework for Knowledge Tracing (AdvKT) which focuses on the multi-step KT task.
arXiv Detail & Related papers (2025-04-07T03:31:57Z) - Improving Question Embeddings with Cognitiv Representation Optimization for Knowledge Tracing [77.14348157016518]
The Knowledge Tracing (KT) aims to track changes in students' knowledge status and predict their future answers based on their historical answer records.
Current research on KT modeling focuses on predicting student' future performance based on existing, unupdated records of student learning interactions.
We propose a Cognitive Representation Optimization for Knowledge Tracing model, which utilizes a dynamic programming algorithm to optimize structure of cognitive representations.
arXiv Detail & Related papers (2025-04-05T09:32:03Z) - Disentangled Knowledge Tracing for Alleviating Cognitive Bias [7.145106976584109]
We propose a Disentangled Knowledge Tracing model, which models students' familiar and unfamiliar abilities based on causal effects.
DisKT significantly alleviates cognitive bias and outperforms 16 baselines in evaluation accuracy.
arXiv Detail & Related papers (2025-03-04T12:04:13Z) - Uncertainty-aware Knowledge Tracing [2.8931305033614816]
Knowledge Tracing (KT) is crucial in education assessment, which focuses on depicting students' learning states and assessing students' mastery of subjects.<n>Previous research commonly adopts deterministic representation to capture students' knowledge states, which neglects the uncertainty during student interactions.<n>We propose an Uncertainty-Aware Knowledge Tracing model (UKT) which employs distribution embeddings to represent the uncertainty in student interactions.
arXiv Detail & Related papers (2025-01-09T18:17:27Z) - SINKT: A Structure-Aware Inductive Knowledge Tracing Model with Large Language Model [64.92472567841105]
Knowledge Tracing (KT) aims to determine whether students will respond correctly to the next question.
Structure-aware Inductive Knowledge Tracing model with large language model (dubbed SINKT)
SINKT predicts the student's response to the target question by interacting with the student's knowledge state and the question representation.
arXiv Detail & Related papers (2024-07-01T12:44:52Z) - Learning Objective-Specific Active Learning Strategies with Attentive
Neural Processes [72.75421975804132]
Learning Active Learning (LAL) suggests to learn the active learning strategy itself, allowing it to adapt to the given setting.
We propose a novel LAL method for classification that exploits symmetry and independence properties of the active learning problem.
Our approach is based on learning from a myopic oracle, which gives our model the ability to adapt to non-standard objectives.
arXiv Detail & Related papers (2023-09-11T14:16:37Z) - B-Learner: Quasi-Oracle Bounds on Heterogeneous Causal Effects Under
Hidden Confounding [51.74479522965712]
We propose a meta-learner called the B-Learner, which can efficiently learn sharp bounds on the CATE function under limits on hidden confounding.
We prove its estimates are valid, sharp, efficient, and have a quasi-oracle property with respect to the constituent estimators under more general conditions than existing methods.
arXiv Detail & Related papers (2023-04-20T18:07:19Z) - Differentiating Student Feedbacks for Knowledge Tracing [28.669001606806525]
We propose a framework to reweight the contribution of different responses based on their discrimination in training.<n>We also introduce an adaptive predictive score fusion technique to maintain accuracy on less discriminative responses.
arXiv Detail & Related papers (2022-12-16T13:55:07Z) - Interpretable Knowledge Tracing: Simple and Efficient Student Modeling
with Causal Relations [21.74631969428855]
Interpretable Knowledge Tracing (IKT) is a simple model that relies on three meaningful latent features.
IKT's prediction of future student performance is made using a Tree-Augmented Naive Bayes (TAN)
IKT has great potential for providing adaptive and personalized instructions with causal reasoning in real-world educational systems.
arXiv Detail & Related papers (2021-12-15T19:05:48Z) - BKT-LSTM: Efficient Student Modeling for knowledge tracing and student
performance prediction [0.24366811507669117]
We propose an efficient student model called BKT-LSTM.
It contains three meaningful components: individual textitskill mastery assessed by BKT, textitability profile (learning transfer across skills) detected by k-means clustering and textitproblem difficulty.
arXiv Detail & Related papers (2020-12-22T18:05:36Z) - Influence Functions in Deep Learning Are Fragile [52.31375893260445]
influence functions approximate the effect of samples in test-time predictions.
influence estimates are fairly accurate for shallow networks.
Hessian regularization is important to get highquality influence estimates.
arXiv Detail & Related papers (2020-06-25T18:25:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.