論文の概要: The 2nd Place Solution from the 3D Semantic Segmentation Track in the 2024 Waymo Open Dataset Challenge
- arxiv url: http://arxiv.org/abs/2501.05472v1
- Date: Mon, 06 Jan 2025 10:34:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-13 15:27:54.588834
- Title: The 2nd Place Solution from the 3D Semantic Segmentation Track in the 2024 Waymo Open Dataset Challenge
- Title(参考訳): 2024年Waymoオープンデータセットチャレンジにおける3次元セマンティックセマンティックセグメンテーショントラックからの2位ソリューション
- Authors: Qing Wu,
- Abstract要約: MixSeg3Dは、強力なポイントクラウドセグメンテーションモデルと高度な3Dデータミキシング戦略を組み合わせた高度な組み合わせである。
我々は,MixSeg3Dがベースラインや先行技術よりも優れていることを示す。
私たちのチームは、2024年のオープンデータセットチャレンジの3Dセマンティックセグメンテーショントラックで2位を獲得しました。
- 参考スコア(独自算出の注目度): 9.315487983591998
- License:
- Abstract: 3D semantic segmentation is one of the most crucial tasks in driving perception. The ability of a learning-based model to accurately perceive dense 3D surroundings often ensures the safe operation of autonomous vehicles. However, existing LiDAR-based 3D semantic segmentation databases consist of sequentially acquired LiDAR scans that are long-tailed and lack training diversity. In this report, we introduce MixSeg3D, a sophisticated combination of the strong point cloud segmentation model with advanced 3D data mixing strategies. Specifically, our approach integrates the MinkUNet family with LaserMix and PolarMix, two scene-scale data augmentation methods that blend LiDAR point clouds along the ego-scene's inclination and azimuth directions. Through empirical experiments, we demonstrate the superiority of MixSeg3D over the baseline and prior arts. Our team achieved 2nd place in the 3D semantic segmentation track of the 2024 Waymo Open Dataset Challenge.
- Abstract(参考訳): 3Dセマンティックセグメンテーションは、知覚を駆動する上で最も重要なタスクの1つである。
学習に基づくモデルが、密集した3D環境を正確に知覚する能力によって、自動運転車の安全な運転が保証されることが多い。
しかし、既存のLiDARベースの3Dセマンティックセグメンテーションデータベースは、長い尾を持ち、訓練の多様性に欠ける逐次的に取得されたLiDARスキャンで構成されている。
本報告では,強力な点雲分割モデルと高度な3Dデータ混合戦略を組み合わせたMixSeg3Dを紹介する。
具体的には、MinkUNetファミリをLaserMixとPolarMixと統合し、エゴシーンの傾斜方向と方位方向に沿ってLiDAR点雲をブレンドする2つのシーンスケールデータ拡張手法を提案する。
実験により,MixSeg3Dがベースラインや先行技術よりも優れていることを示す。
私たちのチームは、2024年のWaymo Open Dataset Challengeの3Dセマンティックセグメンテーショントラックで2位を獲得しました。
関連論文リスト
- Leveraging Large-Scale Pretrained Vision Foundation Models for
Label-Efficient 3D Point Cloud Segmentation [67.07112533415116]
本稿では3Dポイントクラウドセグメンテーションタスクに様々な基礎モデルを適用する新しいフレームワークを提案する。
我々のアプローチでは、異なる大きな視覚モデルを用いて2次元セマンティックマスクの初期予測を行う。
本研究では,ロバストな3Dセマンティックな擬似ラベルを生成するために,投票による全ての結果を効果的に組み合わせたセマンティックなラベル融合戦略を提案する。
論文 参考訳(メタデータ) (2023-11-03T15:41:15Z) - Every Dataset Counts: Scaling up Monocular 3D Object Detection with Joint Datasets Training [9.272389295055271]
本研究では,多種多様な3次元および2次元データセットを用いたモノクロ3次元物体検出モデルの学習パイプラインについて検討した。
提案フレームワークは,(1)様々なカメラ設定にまたがって機能するロバストなモノクル3Dモデル,(2)異なるクラスアノテーションでデータセットを適応するための選択学習戦略,(3)2Dラベルを用いた擬似3Dトレーニング手法により,2Dラベルのみを含むシーンにおける検出性能を向上させる。
論文 参考訳(メタデータ) (2023-10-02T06:17:24Z) - An Effective Motion-Centric Paradigm for 3D Single Object Tracking in
Point Clouds [50.19288542498838]
LiDARポイントクラウド(LiDAR SOT)における3Dシングルオブジェクトトラッキングは、自動運転において重要な役割を果たす。
現在のアプローチはすべて、外観マッチングに基づくシームズパラダイムに従っている。
我々は新たな視点からLiDAR SOTを扱うための動き中心のパラダイムを導入する。
論文 参考訳(メタデータ) (2023-03-21T17:28:44Z) - Joint-MAE: 2D-3D Joint Masked Autoencoders for 3D Point Cloud
Pre-training [65.75399500494343]
Masked Autoencoders (MAE) は、2Dおよび3Dコンピュータビジョンのための自己教師型学習において有望な性能を示した。
自己監督型3次元点雲事前学習のための2D-3DジョイントMAEフレームワークであるJoint-MAEを提案する。
論文 参考訳(メタデータ) (2023-02-27T17:56:18Z) - LWSIS: LiDAR-guided Weakly Supervised Instance Segmentation for
Autonomous Driving [34.119642131912485]
より巧妙なフレームワークであるLiDAR誘導弱監視インスタンス(LWSIS)を提示する。
LWSISは市販の3Dデータ、すなわちポイントクラウドと3Dボックスを2Dイメージインスタンスセグメンテーションモデルをトレーニングするための自然な弱い監督手段として使用している。
我々のLWSISは、訓練中のマルチモーダルデータの補完情報を利用するだけでなく、密集した2Dマスクのコストを大幅に削減します。
論文 参考訳(メタデータ) (2022-12-07T08:08:01Z) - Dense Voxel Fusion for 3D Object Detection [10.717415797194896]
ボクセル融合 (Voxel Fusion, DVF) は, 多スケール密度ボクセル特徴表現を生成する逐次融合法である。
地上の真理2Dバウンディングボックスラベルを直接トレーニングし、ノイズの多い検出器固有の2D予測を避けます。
提案したマルチモーダルトレーニング戦略は, 誤った2次元予測を用いたトレーニングに比べ, より一般化できることを示す。
論文 参考訳(メタデータ) (2022-03-02T04:51:31Z) - Cylindrical and Asymmetrical 3D Convolution Networks for LiDAR-based
Perception [122.53774221136193]
運転時のLiDARに基づく認識のための最先端の手法は、しばしば点雲を2D空間に投影し、2D畳み込みによって処理する。
自然な対策として、3Dボクセル化と3D畳み込みネットワークを利用する方法がある。
本研究では,3次元幾何学的パターンを探索するために,円筒状分割と非対称な3次元畳み込みネットワークを設計する,屋外LiDARセグメンテーションのための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2021-09-12T06:25:11Z) - Monocular Quasi-Dense 3D Object Tracking [99.51683944057191]
周囲の物体の将来の位置を予測し、自律運転などの多くのアプリケーションで観測者の行動を計画するためには、信頼性と正確な3D追跡フレームワークが不可欠である。
移動プラットフォーム上で撮影された2次元画像のシーケンスから,移動物体を時間とともに効果的に関連付け,その全3次元バウンディングボックス情報を推定するフレームワークを提案する。
論文 参考訳(メタデータ) (2021-03-12T15:30:02Z) - Cylindrical and Asymmetrical 3D Convolution Networks for LiDAR
Segmentation [81.02742110604161]
大規模運転シーンのLiDARセグメンテーションのための最先端の手法は、しばしば点雲を2次元空間に投影し、2D畳み込みによって処理する。
そこで我々は,3次元幾何学的パタンを探索するために,円筒分割と非対称な3次元畳み込みネットワークを設計する,屋外LiDARセグメンテーションのための新しいフレームワークを提案する。
提案手法はセマンティックKITTIのリーダーボードにおいて第1位を獲得し,既存のnuScenesの手法を約4%のマージンで上回っている。
論文 参考訳(メタデータ) (2020-11-19T18:53:11Z) - RELLIS-3D Dataset: Data, Benchmarks and Analysis [16.803548871633957]
RELLIS-3Dはオフロード環境で収集されたマルチモーダルデータセットである。
データはテキサスA&M大学のRellis Campusで収集されました。
論文 参考訳(メタデータ) (2020-11-17T18:28:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。