Generative Flow Networks: Theory and Applications to Structure Learning
- URL: http://arxiv.org/abs/2501.05498v1
- Date: Thu, 09 Jan 2025 17:47:17 GMT
- Title: Generative Flow Networks: Theory and Applications to Structure Learning
- Authors: Tristan Deleu,
- Abstract summary: This thesis studies the problem of structure learning from a Bayesian perspective.
It introduces Generative Flow Networks (GFlowNets)
GFlowNets treat generation as a sequential decision making problem.
- Score: 7.6872614776094
- License:
- Abstract: Without any assumptions about data generation, multiple causal models may explain our observations equally well. To avoid selecting a single arbitrary model that could result in unsafe decisions if it does not match reality, it is therefore essential to maintain a notion of epistemic uncertainty about our possible candidates. This thesis studies the problem of structure learning from a Bayesian perspective, approximating the posterior distribution over the structure of a causal model, represented as a directed acyclic graph (DAG), given data. It introduces Generative Flow Networks (GFlowNets), a novel class of probabilistic models designed for modeling distributions over discrete and compositional objects such as graphs. They treat generation as a sequential decision making problem, constructing samples of a target distribution defined up to a normalization constant piece by piece. In the first part of this thesis, we present the mathematical foundations of GFlowNets, their connections to existing domains of machine learning and statistics such as variational inference and reinforcement learning, and their extensions beyond discrete problems. In the second part of this thesis, we show how GFlowNets can approximate the posterior distribution over DAG structures of causal Bayesian Networks, along with the parameters of its causal mechanisms, given observational and experimental data.
Related papers
- DeCaf: A Causal Decoupling Framework for OOD Generalization on Node Classification [14.96980804513399]
Graph Neural Networks (GNNs) are susceptible to distribution shifts, creating vulnerability and security issues in critical domains.
Existing methods that target learning an invariant (feature, structure)-label mapping often depend on oversimplified assumptions about the data generation process.
We introduce a more realistic graph data generation model using Structural Causal Models (SCMs)
We propose a casual decoupling framework, DeCaf, that independently learns unbiased feature-label and structure-label mappings.
arXiv Detail & Related papers (2024-10-27T00:22:18Z) - Bayesian learning of Causal Structure and Mechanisms with GFlowNets and Variational Bayes [51.84122462615402]
We introduce a novel method to learn the structure and mechanisms of the causal model using Variational Bayes-DAG-GFlowNet.
We extend the method of Bayesian causal structure learning using GFlowNets to learn the parameters of a linear-Gaussian model.
arXiv Detail & Related papers (2022-11-04T21:57:39Z) - Bayesian Structure Learning with Generative Flow Networks [85.84396514570373]
In Bayesian structure learning, we are interested in inferring a distribution over the directed acyclic graph (DAG) from data.
Recently, a class of probabilistic models, called Generative Flow Networks (GFlowNets), have been introduced as a general framework for generative modeling.
We show that our approach, called DAG-GFlowNet, provides an accurate approximation of the posterior over DAGs.
arXiv Detail & Related papers (2022-02-28T15:53:10Z) - Discovering Invariant Rationales for Graph Neural Networks [104.61908788639052]
Intrinsic interpretability of graph neural networks (GNNs) is to find a small subset of the input graph's features.
We propose a new strategy of discovering invariant rationale (DIR) to construct intrinsically interpretable GNNs.
arXiv Detail & Related papers (2022-01-30T16:43:40Z) - Variational Causal Networks: Approximate Bayesian Inference over Causal
Structures [132.74509389517203]
We introduce a parametric variational family modelled by an autoregressive distribution over the space of discrete DAGs.
In experiments, we demonstrate that the proposed variational posterior is able to provide a good approximation of the true posterior.
arXiv Detail & Related papers (2021-06-14T17:52:49Z) - DiBS: Differentiable Bayesian Structure Learning [38.01659425023988]
We propose a general, fully differentiable framework for Bayesian structure learning (DiBS)
DiBS operates in the continuous space of a latent probabilistic graph representation.
Contrary to existing work, DiBS is agnostic to the form of the local conditional distributions.
arXiv Detail & Related papers (2021-05-25T11:23:08Z) - Structural Causal Models Are (Solvable by) Credal Networks [70.45873402967297]
Causal inferences can be obtained by standard algorithms for the updating of credal nets.
This contribution should be regarded as a systematic approach to represent structural causal models by credal networks.
Experiments show that approximate algorithms for credal networks can immediately be used to do causal inference in real-size problems.
arXiv Detail & Related papers (2020-08-02T11:19:36Z) - GANs with Conditional Independence Graphs: On Subadditivity of
Probability Divergences [70.30467057209405]
Generative Adversarial Networks (GANs) are modern methods to learn the underlying distribution of a data set.
GANs are designed in a model-free fashion where no additional information about the underlying distribution is available.
We propose a principled design of a model-based GAN that uses a set of simple discriminators on the neighborhoods of the Bayes-net/MRF.
arXiv Detail & Related papers (2020-03-02T04:31:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.