The more polypersonal the better -- a short look on space geometry of fine-tuned layers
- URL: http://arxiv.org/abs/2501.05503v1
- Date: Thu, 09 Jan 2025 18:50:47 GMT
- Title: The more polypersonal the better -- a short look on space geometry of fine-tuned layers
- Authors: Sergei Kudriashov, Veronika Zykova, Angelina Stepanova, Yakov Raskind, Eduard Klyshinsky,
- Abstract summary: We analyze the changes in the internal representation of the BERT model when it is trained with additional grammatical modules.
We find that adding a single grammatical layer causes the model to separate the new and old grammatical systems within itself.
- Score: 0.0
- License:
- Abstract: The interpretation of deep learning models is a rapidly growing field, with particular interest in language models. There are various approaches to this task, including training simpler models to replicate neural network predictions and analyzing the latent space of the model. The latter method allows us to not only identify patterns in the model's decision-making process, but also understand the features of its internal structure. In this paper, we analyze the changes in the internal representation of the BERT model when it is trained with additional grammatical modules and data containing new grammatical structures (polypersonality). We find that adding a single grammatical layer causes the model to separate the new and old grammatical systems within itself, improving the overall performance on perplexity metrics.
Related papers
- Analysis and Visualization of Linguistic Structures in Large Language Models: Neural Representations of Verb-Particle Constructions in BERT [0.0]
This study investigates the internal representations of verb-particle combinations within large language models (LLMs)
We analyse the representational efficacy of its layers for various verb-particle constructions such as 'agree on', 'come back', and 'give up'
Results show that BERT's middle layers most effectively capture syntactic structures, with significant variability in representational accuracy across different verb categories.
arXiv Detail & Related papers (2024-12-19T09:21:39Z) - Hidden Holes: topological aspects of language models [1.1172147007388977]
We study the evolution of topological structure in GPT based large language models across depth and time during training.
We show that the latter exhibit more topological complexity, with a distinct pattern of changes common to all natural languages but absent from synthetically generated data.
arXiv Detail & Related papers (2024-06-09T14:25:09Z) - Opening the Black Box: Analyzing Attention Weights and Hidden States in
Pre-trained Language Models for Non-language Tasks [0.8889304968879164]
We apply a pre-trained language model to constrained arithmetic problems with hierarchical structure, to analyze their attention weight scores and hidden states.
The investigation reveals promising results, with the model addressing hierarchical problems in a moderately structured manner, similar to human problem-solving strategies.
The attention analysis allows us to hypothesize that the model can generalize to longer sequences in ListOps dataset, a conclusion later confirmed through testing on sequences longer than those in the training set.
arXiv Detail & Related papers (2023-06-21T11:48:07Z) - Understanding Domain Learning in Language Models Through Subpopulation
Analysis [35.16003054930906]
We investigate how different domains are encoded in modern neural network architectures.
We analyze the relationship between natural language domains, model size, and the amount of training data used.
arXiv Detail & Related papers (2022-10-22T21:12:57Z) - Dynamic Latent Separation for Deep Learning [67.62190501599176]
A core problem in machine learning is to learn expressive latent variables for model prediction on complex data.
Here, we develop an approach that improves expressiveness, provides partial interpretation, and is not restricted to specific applications.
arXiv Detail & Related papers (2022-10-07T17:56:53Z) - A Unified Understanding of Deep NLP Models for Text Classification [88.35418976241057]
We have developed a visual analysis tool, DeepNLPVis, to enable a unified understanding of NLP models for text classification.
The key idea is a mutual information-based measure, which provides quantitative explanations on how each layer of a model maintains the information of input words in a sample.
A multi-level visualization, which consists of a corpus-level, a sample-level, and a word-level visualization, supports the analysis from the overall training set to individual samples.
arXiv Detail & Related papers (2022-06-19T08:55:07Z) - Learning Contextual Representations for Semantic Parsing with
Generation-Augmented Pre-Training [86.91380874390778]
We present Generation-Augmented Pre-training (GAP), that jointly learns representations of natural language utterances and table schemas by leveraging generation models to generate pre-train data.
Based on experimental results, neural semantics that leverage GAP MODEL obtain new state-of-the-art results on both SPIDER and CRITERIA-TO-generative benchmarks.
arXiv Detail & Related papers (2020-12-18T15:53:50Z) - Unsupervised Paraphrasing with Pretrained Language Models [85.03373221588707]
We propose a training pipeline that enables pre-trained language models to generate high-quality paraphrases in an unsupervised setting.
Our recipe consists of task-adaptation, self-supervision, and a novel decoding algorithm named Dynamic Blocking.
We show with automatic and human evaluations that our approach achieves state-of-the-art performance on both the Quora Question Pair and the ParaNMT datasets.
arXiv Detail & Related papers (2020-10-24T11:55:28Z) - Grounded Compositional Outputs for Adaptive Language Modeling [59.02706635250856]
A language model's vocabulary$-$typically selected before training and permanently fixed later$-$affects its size.
We propose a fully compositional output embedding layer for language models.
To our knowledge, the result is the first word-level language model with a size that does not depend on the training vocabulary.
arXiv Detail & Related papers (2020-09-24T07:21:14Z) - S2RMs: Spatially Structured Recurrent Modules [105.0377129434636]
We take a step towards exploiting dynamic structure that are capable of simultaneously exploiting both modular andtemporal structures.
We find our models to be robust to the number of available views and better capable of generalization to novel tasks without additional training.
arXiv Detail & Related papers (2020-07-13T17:44:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.