Hidden Holes: topological aspects of language models
- URL: http://arxiv.org/abs/2406.05798v1
- Date: Sun, 9 Jun 2024 14:25:09 GMT
- Title: Hidden Holes: topological aspects of language models
- Authors: Stephen Fitz, Peter Romero, Jiyan Jonas Schneider,
- Abstract summary: We study the evolution of topological structure in GPT based large language models across depth and time during training.
We show that the latter exhibit more topological complexity, with a distinct pattern of changes common to all natural languages but absent from synthetically generated data.
- Score: 1.1172147007388977
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We explore the topology of representation manifolds arising in autoregressive neural language models trained on raw text data. In order to study their properties, we introduce tools from computational algebraic topology, which we use as a basis for a measure of topological complexity, that we call perforation. Using this measure, we study the evolution of topological structure in GPT based large language models across depth and time during training. We then compare these to gated recurrent models, and show that the latter exhibit more topological complexity, with a distinct pattern of changes common to all natural languages but absent from synthetically generated data. The paper presents a detailed analysis of the representation manifolds derived by these models based on studying the shapes of vector clouds induced by them as they are conditioned on sentences from corpora of natural language text. The methods developed in this paper are novel in the field and based on mathematical apparatus that might be unfamiliar to the target audience. To help with that we introduce the minimum necessary theory, and provide additional visualizations in the appendices. The main contribution of the paper is a striking observation about the topological structure of the transformer as compared to LSTM based neural architectures. It suggests that further research into mathematical properties of these neural networks is necessary to understand the operation of large transformer language models. We hope this work inspires further explorations in this direction within the NLP community.
Related papers
- How compositional generalization and creativity improve as diffusion models are trained [82.08869888944324]
How many samples do generative models need to learn the composition rules, so as to produce a number of novel data?
We consider diffusion models trained on simple context-free grammars - tree-like graphical models used to represent the structure of data such as language and images.
We demonstrate that diffusion models learn compositional rules with the sample complexity required for clustering features with statistically similar context, a process similar to the word2vec.
arXiv Detail & Related papers (2025-02-17T18:06:33Z) - The more polypersonal the better -- a short look on space geometry of fine-tuned layers [0.0]
We analyze the changes in the internal representation of the BERT model when it is trained with additional grammatical modules.
We find that adding a single grammatical layer causes the model to separate the new and old grammatical systems within itself.
arXiv Detail & Related papers (2025-01-09T18:50:47Z) - Analysis and Visualization of Linguistic Structures in Large Language Models: Neural Representations of Verb-Particle Constructions in BERT [0.0]
This study investigates the internal representations of verb-particle combinations within large language models (LLMs)
We analyse the representational efficacy of its layers for various verb-particle constructions such as 'agree on', 'come back', and 'give up'
Results show that BERT's middle layers most effectively capture syntactic structures, with significant variability in representational accuracy across different verb categories.
arXiv Detail & Related papers (2024-12-19T09:21:39Z) - Topological Representational Similarity Analysis in Brains and Beyond [15.417809900388262]
This thesis introduces Topological RSA (tRSA), a novel framework combining geometric and topological properties of neural representations.
tRSA applies nonlinear monotonic transforms to representational dissimilarities, emphasizing local topology while retaining intermediate-scale geometry.
The resulting geo-topological matrices enable model comparisons robust to noise and individual idiosyncrasies.
arXiv Detail & Related papers (2024-08-21T19:02:00Z) - Explaining Text Similarity in Transformer Models [52.571158418102584]
Recent advances in explainable AI have made it possible to mitigate limitations by leveraging improved explanations for Transformers.
We use BiLRP, an extension developed for computing second-order explanations in bilinear similarity models, to investigate which feature interactions drive similarity in NLP models.
Our findings contribute to a deeper understanding of different semantic similarity tasks and models, highlighting how novel explainable AI methods enable in-depth analyses and corpus-level insights.
arXiv Detail & Related papers (2024-05-10T17:11:31Z) - A Recursive Bateson-Inspired Model for the Generation of Semantic Formal
Concepts from Spatial Sensory Data [77.34726150561087]
This paper presents a new symbolic-only method for the generation of hierarchical concept structures from complex sensory data.
The approach is based on Bateson's notion of difference as the key to the genesis of an idea or a concept.
The model is able to produce fairly rich yet human-readable conceptual representations without training.
arXiv Detail & Related papers (2023-07-16T15:59:13Z) - Physics of Language Models: Part 1, Learning Hierarchical Language Structures [51.68385617116854]
Transformer-based language models are effective but complex, and understanding their inner workings is a significant challenge.
We introduce a family of synthetic CFGs that produce hierarchical rules, capable of generating lengthy sentences.
We demonstrate that generative models like GPT can accurately learn this CFG language and generate sentences based on it.
arXiv Detail & Related papers (2023-05-23T04:28:16Z) - Experimental Observations of the Topology of Convolutional Neural
Network Activations [2.4235626091331737]
Topological data analysis provides compact, noise-robust representations of complex structures.
Deep neural networks (DNNs) learn millions of parameters associated with a series of transformations defined by the model architecture.
In this paper, we apply cutting edge techniques from TDA with the goal of gaining insight into the interpretability of convolutional neural networks used for image classification.
arXiv Detail & Related papers (2022-12-01T02:05:44Z) - Model-agnostic multi-objective approach for the evolutionary discovery
of mathematical models [55.41644538483948]
In modern data science, it is more interesting to understand the properties of the model, which parts could be replaced to obtain better results.
We use multi-objective evolutionary optimization for composite data-driven model learning to obtain the algorithm's desired properties.
arXiv Detail & Related papers (2021-07-07T11:17:09Z) - Causal Abstractions of Neural Networks [9.291492712301569]
We propose a new structural analysis method grounded in a formal theory of textitcausal abstraction.
We apply this method to analyze neural models trained on Multiply Quantified Natural Language Inference (MQNLI) corpus.
arXiv Detail & Related papers (2021-06-06T01:07:43Z) - Reverse Engineering Configurations of Neural Text Generation Models [86.9479386959155]
The study of artifacts that emerge in machine generated text as a result of modeling choices is a nascent research area.
We conduct an extensive suite of diagnostic tests to observe whether modeling choices leave detectable artifacts in the text they generate.
Our key finding, which is backed by a rigorous set of experiments, is that such artifacts are present and that different modeling choices can be inferred by observing the generated text alone.
arXiv Detail & Related papers (2020-04-13T21:02:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.