Hidden Holes: topological aspects of language models
- URL: http://arxiv.org/abs/2406.05798v1
- Date: Sun, 9 Jun 2024 14:25:09 GMT
- Title: Hidden Holes: topological aspects of language models
- Authors: Stephen Fitz, Peter Romero, Jiyan Jonas Schneider,
- Abstract summary: We study the evolution of topological structure in GPT based large language models across depth and time during training.
We show that the latter exhibit more topological complexity, with a distinct pattern of changes common to all natural languages but absent from synthetically generated data.
- Score: 1.1172147007388977
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We explore the topology of representation manifolds arising in autoregressive neural language models trained on raw text data. In order to study their properties, we introduce tools from computational algebraic topology, which we use as a basis for a measure of topological complexity, that we call perforation. Using this measure, we study the evolution of topological structure in GPT based large language models across depth and time during training. We then compare these to gated recurrent models, and show that the latter exhibit more topological complexity, with a distinct pattern of changes common to all natural languages but absent from synthetically generated data. The paper presents a detailed analysis of the representation manifolds derived by these models based on studying the shapes of vector clouds induced by them as they are conditioned on sentences from corpora of natural language text. The methods developed in this paper are novel in the field and based on mathematical apparatus that might be unfamiliar to the target audience. To help with that we introduce the minimum necessary theory, and provide additional visualizations in the appendices. The main contribution of the paper is a striking observation about the topological structure of the transformer as compared to LSTM based neural architectures. It suggests that further research into mathematical properties of these neural networks is necessary to understand the operation of large transformer language models. We hope this work inspires further explorations in this direction within the NLP community.
Related papers
- Analyzing Deep Transformer Models for Time Series Forecasting via Manifold Learning [4.910937238451485]
Transformer models have consistently achieved remarkable results in various domains such as natural language processing and computer vision.
Despite ongoing research efforts to better understand these models, the field still lacks a comprehensive understanding.
Time series data, unlike image and text information, can be more challenging to interpret and analyze.
arXiv Detail & Related papers (2024-10-17T17:32:35Z) - Topological Representational Similarity Analysis in Brains and Beyond [15.417809900388262]
This thesis introduces Topological RSA (tRSA), a novel framework combining geometric and topological properties of neural representations.
tRSA applies nonlinear monotonic transforms to representational dissimilarities, emphasizing local topology while retaining intermediate-scale geometry.
The resulting geo-topological matrices enable model comparisons robust to noise and individual idiosyncrasies.
arXiv Detail & Related papers (2024-08-21T19:02:00Z) - Explaining Text Similarity in Transformer Models [52.571158418102584]
Recent advances in explainable AI have made it possible to mitigate limitations by leveraging improved explanations for Transformers.
We use BiLRP, an extension developed for computing second-order explanations in bilinear similarity models, to investigate which feature interactions drive similarity in NLP models.
Our findings contribute to a deeper understanding of different semantic similarity tasks and models, highlighting how novel explainable AI methods enable in-depth analyses and corpus-level insights.
arXiv Detail & Related papers (2024-05-10T17:11:31Z) - Language Evolution with Deep Learning [49.879239655532324]
Computational modeling plays an essential role in the study of language emergence.
It aims to simulate the conditions and learning processes that could trigger the emergence of a structured language.
This chapter explores another class of computational models that have recently revolutionized the field of machine learning: deep learning models.
arXiv Detail & Related papers (2024-03-18T16:52:54Z) - A Recursive Bateson-Inspired Model for the Generation of Semantic Formal
Concepts from Spatial Sensory Data [77.34726150561087]
This paper presents a new symbolic-only method for the generation of hierarchical concept structures from complex sensory data.
The approach is based on Bateson's notion of difference as the key to the genesis of an idea or a concept.
The model is able to produce fairly rich yet human-readable conceptual representations without training.
arXiv Detail & Related papers (2023-07-16T15:59:13Z) - Physics of Language Models: Part 1, Learning Hierarchical Language Structures [51.68385617116854]
Transformer-based language models are effective but complex, and understanding their inner workings is a significant challenge.
We introduce a family of synthetic CFGs that produce hierarchical rules, capable of generating lengthy sentences.
We demonstrate that generative models like GPT can accurately learn this CFG language and generate sentences based on it.
arXiv Detail & Related papers (2023-05-23T04:28:16Z) - Experimental Observations of the Topology of Convolutional Neural
Network Activations [2.4235626091331737]
Topological data analysis provides compact, noise-robust representations of complex structures.
Deep neural networks (DNNs) learn millions of parameters associated with a series of transformations defined by the model architecture.
In this paper, we apply cutting edge techniques from TDA with the goal of gaining insight into the interpretability of convolutional neural networks used for image classification.
arXiv Detail & Related papers (2022-12-01T02:05:44Z) - Schr\"odinger's Tree -- On Syntax and Neural Language Models [10.296219074343785]
Language models have emerged as NLP's workhorse, displaying increasingly fluent generation capabilities.
We observe a lack of clarity across numerous dimensions, which influences the hypotheses that researchers form.
We outline the implications of the different types of research questions exhibited in studies on syntax.
arXiv Detail & Related papers (2021-10-17T18:25:23Z) - Model-agnostic multi-objective approach for the evolutionary discovery
of mathematical models [55.41644538483948]
In modern data science, it is more interesting to understand the properties of the model, which parts could be replaced to obtain better results.
We use multi-objective evolutionary optimization for composite data-driven model learning to obtain the algorithm's desired properties.
arXiv Detail & Related papers (2021-07-07T11:17:09Z) - Causal Abstractions of Neural Networks [9.291492712301569]
We propose a new structural analysis method grounded in a formal theory of textitcausal abstraction.
We apply this method to analyze neural models trained on Multiply Quantified Natural Language Inference (MQNLI) corpus.
arXiv Detail & Related papers (2021-06-06T01:07:43Z) - Reverse Engineering Configurations of Neural Text Generation Models [86.9479386959155]
The study of artifacts that emerge in machine generated text as a result of modeling choices is a nascent research area.
We conduct an extensive suite of diagnostic tests to observe whether modeling choices leave detectable artifacts in the text they generate.
Our key finding, which is backed by a rigorous set of experiments, is that such artifacts are present and that different modeling choices can be inferred by observing the generated text alone.
arXiv Detail & Related papers (2020-04-13T21:02:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.