論文の概要: Infecting Generative AI With Viruses
- arxiv url: http://arxiv.org/abs/2501.05542v1
- Date: Thu, 09 Jan 2025 19:27:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-13 15:25:58.548661
- Title: Infecting Generative AI With Viruses
- Title(参考訳): ジェネレーティブAIにウイルスを感染させる
- Authors: David Noever, Forrest McKee,
- Abstract要約: 本研究では、JPEG画像内に埋め込まれたEICARテストファイルを用いて、ビジョンラージ言語モデル(VLM/LLM)のセキュリティ境界をテストする新しい手法を示す。
OpenAI GPT-4o, Microsoft Copilot, Google Gemini 1.5 Pro, Anthropic Claude 3.5 Sonnet など,複数の LLM プラットフォームにまたがる4つのプロトコルをうまく実行しました。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: This study demonstrates a novel approach to testing the security boundaries of Vision-Large Language Model (VLM/ LLM) using the EICAR test file embedded within JPEG images. We successfully executed four distinct protocols across multiple LLM platforms, including OpenAI GPT-4o, Microsoft Copilot, Google Gemini 1.5 Pro, and Anthropic Claude 3.5 Sonnet. The experiments validated that a modified JPEG containing the EICAR signature could be uploaded, manipulated, and potentially executed within LLM virtual workspaces. Key findings include: 1) consistent ability to mask the EICAR string in image metadata without detection, 2) successful extraction of the test file using Python-based manipulation within LLM environments, and 3) demonstration of multiple obfuscation techniques including base64 encoding and string reversal. This research extends Microsoft Research's "Penetration Testing Rules of Engagement" framework to evaluate cloud-based generative AI and LLM security boundaries, particularly focusing on file handling and execution capabilities within containerized environments.
- Abstract(参考訳): 本研究では、JPEG画像内に埋め込まれたEICARテストファイルを用いて、ビジョンラージ言語モデル(VLM/LLM)のセキュリティ境界をテストする新しい手法を示す。
OpenAI GPT-4o, Microsoft Copilot, Google Gemini 1.5 Pro, Anthropic Claude 3.5 Sonnet など,複数の LLM プラットフォームにまたがる4つのプロトコルをうまく実行しました。
実験では、EICARシグネチャを含む修正JPEGが、LLM仮想ワークスペース内でアップロード、操作、実行可能であることを検証した。
主な発見は以下のとおりである。
1)EICAR文字列を検出せずに画像メタデータにマスクする一貫した機能。
2) LLM環境内におけるPythonベースの操作を用いたテストファイルの抽出に成功した。
3)base64エンコーディングや文字列反転を含む複数の難読化手法の実証。
この研究は、Microsoft Researchの"Penetration Testing Rules of Engagement"フレームワークを拡張して、クラウドベースの生成AIとLLMセキュリティ境界を評価する。
関連論文リスト
- FDLLM: A Text Fingerprint Detection Method for LLMs in Multi-Language, Multi-Domain Black-Box Environments [18.755880639770755]
大きな言語モデル(LLM)を使用することで、潜在的なセキュリティリスクが生じる可能性がある。
攻撃者は、このブラックボックスシナリオを利用して悪意のあるモデルをデプロイし、ユーザに提供されるコードにウイルスを埋め込むことができる。
本稿では,Qwen2.5-7Bに基づく最初のLLMGT指紋検出モデルである textbfFDLLM を提案する。
論文 参考訳(メタデータ) (2025-01-27T13:18:40Z) - LProtector: An LLM-driven Vulnerability Detection System [3.175156999656286]
LProtectorは、大規模言語モデル(LLM) GPT-4oとRetrieval-Augmented Generation(RAG)によって駆動されるC/C++の自動脆弱性検出システムである。
論文 参考訳(メタデータ) (2024-11-10T15:21:30Z) - An Exploratory Study on Fine-Tuning Large Language Models for Secure Code Generation [17.69409515806874]
脆弱性修正コミットのデータセット上での微調整済みのLLMがセキュアなコード生成を促進するかどうかを探索研究する。
オープンソースのリポジトリから、確認済みの脆弱性のコード修正を収集することで、セキュアなコード生成のための微調整データセットをクロールしました。
我々の調査によると、微調整のLLMは、C言語で6.4%、C++言語で5.4%、セキュアなコード生成を改善することができる。
論文 参考訳(メタデータ) (2024-08-17T02:51:27Z) - JPEG-LM: LLMs as Image Generators with Canonical Codec Representations [51.097213824684665]
離散化は、画像やビデオのような連続したデータを離散トークンとして表現する。
画像やビデオを識別する一般的な方法は、生のピクセル値のモデリングである。
正規表現を用いることで、言語生成と視覚生成の障壁を低くすることができることを示す。
論文 参考訳(メタデータ) (2024-08-15T23:57:02Z) - Small Agent Can Also Rock! Empowering Small Language Models as Hallucination Detector [114.88975874411142]
幻覚検出は大規模言語モデル(LLM)にとって難しい課題である
本稿では,HluAgentと呼ばれる自律型LLMエージェントフレームワークを提案する。
HaluAgentでは、LLM、多機能ツールボックスを統合し、きめ細かい3段階検出フレームワークを設計する。
論文 参考訳(メタデータ) (2024-06-17T07:30:05Z) - ML-Bench: Evaluating Large Language Models and Agents for Machine Learning Tasks on Repository-Level Code [76.84199699772903]
ML-Benchは、既存のコードリポジトリを利用してタスクを実行する現実世界のプログラミングアプリケーションに根ざしたベンチマークである。
LLM(Large Language Model)とAIエージェントの両方を評価するために、事前に定義されたデプロイメント環境でLLMのテキスト-コード変換を評価するML-LLM-Benchと、Linuxサンドボックス環境でエンドツーエンドのタスク実行で自律エージェントをテストするML-Agent-Benchの2つの設定が採用されている。
論文 参考訳(メタデータ) (2023-11-16T12:03:21Z) - PPTC Benchmark: Evaluating Large Language Models for PowerPoint Task
Completion [96.47420221442397]
我々はPowerPoint Task Completionベンチマークを導入し、大規模言語モデルがマルチターン・マルチモーダル命令を完了する能力を評価する。
また,ラベルAPIシーケンスではなく,予測ファイルに基づいてLCMが命令を終了するかどうかを評価するPTX-Match評価システムを提案する。
その結果、GPT-4はシングルターン対話テストにおいて75.1%の精度で他のLLMよりも優れていたが、セッション全体を完成させる際の課題に直面しており、セッションの精度は6%に過ぎなかった。
論文 参考訳(メタデータ) (2023-11-03T08:06:35Z) - LLMs as Hackers: Autonomous Linux Privilege Escalation Attacks [0.0]
言語モデル(LLM)と浸透試験の共通点について検討する。
本稿では,LLMの(倫理的)ハッキングに対する有効性を評価するための,完全自動特権エスカレーションツールを提案する。
我々は,異なるコンテキストサイズ,コンテキスト内学習,任意の高レベルメカニズム,メモリ管理技術の影響を分析する。
論文 参考訳(メタデータ) (2023-10-17T17:15:41Z) - LLM4VV: Developing LLM-Driven Testsuite for Compiler Validation [7.979116939578324]
大規模言語モデル(LLM)は、自然言語を含む幅広いアプリケーションのための強力なツールである。
オープンソースLLM -- Meta Codellama、PhindによるCodellama、Deepseek Deepseek Coder、クローズソースLLM -- OpenAI GPT-3.5-Turbo、GPT-4-Turboなど、最先端のLLMの機能について検討する。
論文 参考訳(メタデータ) (2023-10-08T01:43:39Z) - SPAE: Semantic Pyramid AutoEncoder for Multimodal Generation with Frozen
LLMs [124.29233620842462]
画像やビデオなどの非言語的モダリティを含む理解タスクと生成タスクを,凍結したLLMで実現するためのSPAEを導入する。
結果として得られる語彙トークンは、意味的意味と視覚的再構成に必要な細部の両方をキャプチャする。
提案手法は,凍結したLCMが画像理解タスクの最先端性能を25%以上越えながら,画像コンテンツを生成できるようにする試みとして,初めて成功した試みである。
論文 参考訳(メタデータ) (2023-06-30T17:59:07Z) - ICL-D3IE: In-Context Learning with Diverse Demonstrations Updating for
Document Information Extraction [56.790794611002106]
大規模言語モデル(LLM)は、様々な自然言語処理(NLP)タスクにおいて、文脈内学習による顕著な結果を示している。
ICL-D3IEと呼ばれるシンプルだが効果的なテキスト内学習フレームワークを提案する。
具体的には、ハードトレーニング文書から最も困難で独特なセグメントをハードデモとして抽出する。
論文 参考訳(メタデータ) (2023-03-09T06:24:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。