Soup to go: mitigating forgetting during continual learning with model averaging
- URL: http://arxiv.org/abs/2501.05559v1
- Date: Thu, 09 Jan 2025 20:11:08 GMT
- Title: Soup to go: mitigating forgetting during continual learning with model averaging
- Authors: Anat Kleiman, Gintare Karolina Dziugaite, Jonathan Frankle, Sham Kakade, Mansheej Paul,
- Abstract summary: In continual learning, fine-tuning on later tasks will often lead to performance degradation on earlier tasks.
Inspired by other merging methods, and L2-regression, we propose Sequential Fine-tuning with Averaging (SFA)
Our method achieves comparable results without the need to store past data.
In turn, our method offers insight into the benefits of merging partially-trained models during training across both image and language domains.
- Score: 24.3125190049867
- License:
- Abstract: In continual learning, where task data arrives in a sequence, fine-tuning on later tasks will often lead to performance degradation on earlier tasks. This is especially pronounced when these tasks come from diverse domains. In this setting, how can we mitigate catastrophic forgetting of earlier tasks and retain what the model has learned with minimal computational expenses? Inspired by other merging methods, and L2-regression, we propose Sequential Fine-tuning with Averaging (SFA), a method that merges currently training models with earlier checkpoints during the course of training. SOTA approaches typically maintain a data buffer of past tasks or impose a penalty at each gradient step. In contrast, our method achieves comparable results without the need to store past data, or multiple copies of parameters for each gradient step. Furthermore, our method outperforms common merging techniques such as Task Arithmetic, TIES Merging, and WiSE-FT, as well as other penalty methods like L2 and Elastic Weight Consolidation. In turn, our method offers insight into the benefits of merging partially-trained models during training across both image and language domains.
Related papers
- Truncated Consistency Models [57.50243901368328]
Training consistency models requires learning to map all intermediate points along PF ODE trajectories to their corresponding endpoints.
We empirically find that this training paradigm limits the one-step generation performance of consistency models.
We propose a new parameterization of the consistency function and a two-stage training procedure that prevents the truncated-time training from collapsing to a trivial solution.
arXiv Detail & Related papers (2024-10-18T22:38:08Z) - An Effective Dynamic Gradient Calibration Method for Continual Learning [11.555822066922508]
Continual learning (CL) is a fundamental topic in machine learning, where the goal is to train a model with continuously incoming data and tasks.
Due to the memory limit, we cannot store all the historical data, and therefore confront the catastrophic forgetting'' problem.
We develop an effective algorithm to calibrate the gradient in each updating step of the model.
arXiv Detail & Related papers (2024-07-30T16:30:09Z) - Adaptive Retention & Correction: Test-Time Training for Continual Learning [114.5656325514408]
A common problem in continual learning is the classification layer's bias towards the most recent task.
We name our approach Adaptive Retention & Correction (ARC)
ARC achieves an average performance increase of 2.7% and 2.6% on the CIFAR-100 and Imagenet-R datasets.
arXiv Detail & Related papers (2024-05-23T08:43:09Z) - Task-Distributionally Robust Data-Free Meta-Learning [99.56612787882334]
Data-Free Meta-Learning (DFML) aims to efficiently learn new tasks by leveraging multiple pre-trained models without requiring their original training data.
For the first time, we reveal two major challenges hindering their practical deployments: Task-Distribution Shift ( TDS) and Task-Distribution Corruption (TDC)
arXiv Detail & Related papers (2023-11-23T15:46:54Z) - Efficient Grammatical Error Correction Via Multi-Task Training and
Optimized Training Schedule [55.08778142798106]
We propose auxiliary tasks that exploit the alignment between the original and corrected sentences.
We formulate each task as a sequence-to-sequence problem and perform multi-task training.
We find that the order of datasets used for training and even individual instances within a dataset may have important effects on the final performance.
arXiv Detail & Related papers (2023-11-20T14:50:12Z) - Task Arithmetic with LoRA for Continual Learning [0.0]
We propose a novel method to continually train vision models using low-rank adaptation and task arithmetic.
When aided with a small memory of 10 samples per class, our method achieves performance close to full-set finetuning.
arXiv Detail & Related papers (2023-11-04T15:12:24Z) - AdaMerging: Adaptive Model Merging for Multi-Task Learning [68.75885518081357]
This paper introduces an innovative technique called Adaptive Model Merging (AdaMerging)
It aims to autonomously learn the coefficients for model merging, either in a task-wise or layer-wise manner, without relying on the original training data.
Compared to the current state-of-the-art task arithmetic merging scheme, AdaMerging showcases a remarkable 11% improvement in performance.
arXiv Detail & Related papers (2023-10-04T04:26:33Z) - Clustering-based Domain-Incremental Learning [4.835091081509403]
Key challenge in continual learning is the so-called "catastrophic forgetting problem"
We propose an online clustering-based approach on a dynamically updated finite pool of samples or gradients.
We demonstrate the effectiveness of the proposed strategy and its promising performance compared to state-of-the-art methods.
arXiv Detail & Related papers (2023-09-21T13:49:05Z) - Towards Robust Continual Learning with Bayesian Adaptive Moment Regularization [51.34904967046097]
Continual learning seeks to overcome the challenge of catastrophic forgetting, where a model forgets previously learnt information.
We introduce a novel prior-based method that better constrains parameter growth, reducing catastrophic forgetting.
Results show that BAdam achieves state-of-the-art performance for prior-based methods on challenging single-headed class-incremental experiments.
arXiv Detail & Related papers (2023-09-15T17:10:51Z) - Learning to Modulate pre-trained Models in RL [22.812215561012874]
Fine-tuning a pre-trained model often suffers from catastrophic forgetting.
Our study shows that with most fine-tuning approaches, the performance on pre-training tasks deteriorates significantly.
We propose a novel method, Learning-to-Modulate (L2M), that avoids the degradation of learned skills by modulating the information flow of the frozen pre-trained model.
arXiv Detail & Related papers (2023-06-26T17:53:05Z) - Accelerating Deep Learning with Dynamic Data Pruning [0.0]
Deep learning has become prohibitively costly, requiring access to powerful computing systems to train state-of-the-art networks.
Previous work, such as forget scores and GraNd/EL2N scores, identify important samples within a full dataset and pruning the remaining samples, thereby reducing the iterations per epoch.
We propose two algorithms, based on reinforcement learning techniques, to dynamically prune samples and achieve even higher accuracy than the random dynamic method.
arXiv Detail & Related papers (2021-11-24T16:47:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.