論文の概要: Enforcing Fundamental Relations via Adversarial Attacks on Input Parameter Correlations
- arxiv url: http://arxiv.org/abs/2501.05588v1
- Date: Thu, 09 Jan 2025 21:45:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-13 15:26:26.439603
- Title: Enforcing Fundamental Relations via Adversarial Attacks on Input Parameter Correlations
- Title(参考訳): 入力パラメータ相関に対する逆攻撃による基本関係の強制
- Authors: Timo Saala, Lucie Flek, Alexander Jung, Akbar Karimi, Alexander Schmidt, Matthias Schott, Philipp Soldin, Christopher Wiebusch,
- Abstract要約: 入力パラメータ間の相関は、多くの科学的分類タスクにおいて重要な役割を果たす。
我々はRandom Distribution Shuffle Attack (RDSA)と呼ばれる新たな敵攻撃アルゴリズムを提案する。
6つの分類課題においてRDSAの有効性を示す。
- 参考スコア(独自算出の注目度): 76.2226569692207
- License:
- Abstract: Correlations between input parameters play a crucial role in many scientific classification tasks, since these are often related to fundamental laws of nature. For example, in high energy physics, one of the common deep learning use-cases is the classification of signal and background processes in particle collisions. In many such cases, the fundamental principles of the correlations between observables are often better understood than the actual distributions of the observables themselves. In this work, we present a new adversarial attack algorithm called Random Distribution Shuffle Attack (RDSA), emphasizing the correlations between observables in the network rather than individual feature characteristics. Correct application of the proposed novel attack can result in a significant improvement in classification performance - particularly in the context of data augmentation - when using the generated adversaries within adversarial training. Given that correlations between input features are also crucial in many other disciplines. We demonstrate the RDSA effectiveness on six classification tasks, including two particle collision challenges (using CERN Open Data), hand-written digit recognition (MNIST784), human activity recognition (HAR), weather forecasting (Rain in Australia), and ICU patient mortality (MIMIC-IV), demonstrating a general use case beyond fundamental physics for this new type of adversarial attack algorithms.
- Abstract(参考訳): 入力パラメータ間の相関は、多くの科学的分類タスクにおいて重要な役割を果たす。
例えば、高エネルギー物理学において、一般的なディープラーニングのユースケースの1つは、粒子衝突における信号と背景過程の分類である。
このような場合、観測者間の相関の基本的な原理は、観測者自身の実際の分布よりもよく理解される。
本研究では,個々の特徴ではなく,ネットワーク内の観測変数間の相関性を強調する,RDSA(Random Distribution Shuffle Attack)と呼ばれる新たな敵攻撃アルゴリズムを提案する。
提案した新規攻撃の正しい適用は、敵の訓練で生成された敵を用いる場合、分類性能(特にデータ増大の文脈で)が大幅に向上する可能性がある。
入力特徴間の相関も他の多くの分野において重要である。
本研究は,CERNオープンデータを用いた2つの粒子衝突問題(MNIST784),HAR(Human Activity Recognition),天気予報(Rain in Australia),ICU患者死亡率(MIMIC-IV)の6つの分類課題におけるRDSAの有効性を示す。
関連論文リスト
- Learning Robust Classifiers with Self-Guided Spurious Correlation Mitigation [26.544938760265136]
ディープニューラル分類器は、入力のスプリアス属性とターゲットの間のスプリアス相関に頼り、予測を行う。
本稿では,自己誘導型スプリアス相関緩和フレームワークを提案する。
予測行動の違いを識別するために分類器の訓練を行うことで,事前知識を必要とせず,素因関係への依存を軽減できることを示す。
論文 参考訳(メタデータ) (2024-05-06T17:12:21Z) - How adversarial attacks can disrupt seemingly stable accurate classifiers [76.95145661711514]
敵攻撃は、入力データに不連続な修正を加えることで、非正確な学習システムの出力を劇的に変化させる。
ここでは,これは高次元入力データを扱う分類器の基本的特徴であると考えられる。
実用システムで観測される重要な振る舞いを高い確率で発生させる、単純で汎用的なフレームワークを導入する。
論文 参考訳(メタデータ) (2023-09-07T12:02:00Z) - Doubly Robust Instance-Reweighted Adversarial Training [107.40683655362285]
本稿では,2重のインスタンス再重み付き対向フレームワークを提案する。
KL偏差正規化損失関数の最適化により重みを求める。
提案手法は, 平均ロバスト性能において, 最先端のベースライン法よりも優れた性能を示す。
論文 参考訳(メタデータ) (2023-08-01T06:16:18Z) - Investigating Adversarial Vulnerability and Implicit Bias through Frequency Analysis [0.3985805843651649]
本研究では,これらの摂動と,勾配に基づくアルゴリズムで学習したニューラルネットワークの暗黙バイアスとの関係について検討する。
入力画像のそれぞれに対して, 正確な分類や誤分類に必要な最小かつ最も重要な周波数を, 逆摂動バージョンで同定する。
その結果,Fourier空間のネットワークバイアスと敵攻撃の標的周波数は高い相関性を示し,新たな敵防御戦略が示唆された。
論文 参考訳(メタデータ) (2023-05-24T14:40:23Z) - Counterfactual Adversarial Learning with Representation Interpolation [11.843735677432166]
本稿では,逆境因果関係の観点から問題に取り組むために,対人関係訓練の枠組みを導入する。
実験により、CATは異なる下流タスク間でSOTAよりも大幅にパフォーマンスが向上することが示された。
論文 参考訳(メタデータ) (2021-09-10T09:23:08Z) - ACP++: Action Co-occurrence Priors for Human-Object Interaction
Detection [102.9428507180728]
ヒューマン・オブジェクト・インタラクション(HOI)検出のタスクにおける一般的な問題は、多数のHOIクラスが少数のラベル付き例しか持たないことである。
我々は、人間と物体の相互作用の間に自然の相関関係と反相関が存在することを観察した。
我々は、これらの先行知識を学習し、特に稀なクラスにおいて、より効果的な訓練に活用する手法を提案する。
論文 参考訳(メタデータ) (2021-09-09T06:02:50Z) - Vulnerability Under Adversarial Machine Learning: Bias or Variance? [77.30759061082085]
本研究では,機械学習が訓練された深層ニューラルネットワークのバイアスと分散に与える影響について検討する。
我々の分析は、ディープニューラルネットワークが対向的摂動下で性能が劣っている理由に光を当てている。
本稿では,計算処理の複雑さをよく知られた機械学習手法よりも低く抑えた,新しい逆機械学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-08-01T00:58:54Z) - Detecting Human-Object Interactions with Action Co-occurrence Priors [108.31956827512376]
人-物間相互作用(HOI)検出タスクにおける一般的な問題は、多数のHOIクラスが少数のラベル付き例しか持たないことである。
我々は、人間と物体の相互作用の間に自然の相関と反相関が存在することを観察した。
我々はこれらの先行知識を学習し、特に稀なクラスにおいてより効果的な訓練に活用する手法を提案する。
論文 参考訳(メタデータ) (2020-07-17T02:47:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。