Human-centered Geospatial Data Science
- URL: http://arxiv.org/abs/2501.05595v1
- Date: Thu, 09 Jan 2025 21:56:51 GMT
- Title: Human-centered Geospatial Data Science
- Authors: Yuhao Kang,
- Abstract summary: This entry provides an overview of Human-centered Geospatial Data Science.
It highlights the gaps it aims to bridge, its significance, and its key topics and research.
- Score: 3.8979646385036166
- License:
- Abstract: This entry provides an overview of Human-centered Geospatial Data Science, highlighting the gaps it aims to bridge, its significance, and its key topics and research. Geospatial Data Science, which derives geographic knowledge and insights from large volumes of geospatial big data using advanced Geospatial Artificial Intelligence (GeoAI), has been widely used to tackle a wide range of geographic problems. However, it often overlooks the subjective human experiences that fundamentally influence human-environment interactions, and few strategies have been developed to ensure that these technologies follow ethical guidelines and prioritize human values. Human-centered Geospatial Data Science advocates for two primary focuses. First, it advances our understanding of human-environment interactions by leveraging Geospatial Data Science to measure and analyze human subjective experiences at place including emotion, perception, cognition, and creativity. Second, it advocates for the development of responsible and ethical Geospatial Data Science methods that protect geoprivacy, enhance fairness and reduce bias, and improve the explainability and transparency of geospatial technologies. With these two missions, Human-centered Geospatial Data Sciences brings a fresh perspective to develop and utilize geospatial technologies that positively impact society and benefit human well-being and the humanities.
Related papers
- Geolocation with Real Human Gameplay Data: A Large-Scale Dataset and Human-Like Reasoning Framework [59.42946541163632]
We introduce a comprehensive geolocation framework with three key components.
GeoComp, a large-scale dataset; GeoCoT, a novel reasoning method; and GeoEval, an evaluation metric.
We demonstrate that GeoCoT significantly boosts geolocation accuracy by up to 25% while enhancing interpretability.
arXiv Detail & Related papers (2025-02-19T14:21:25Z) - PEACE: Empowering Geologic Map Holistic Understanding with MLLMs [64.58959634712215]
Geologic map, as a fundamental diagram in geology science, provides critical insights into the structure and composition of Earth's subsurface and surface.
Despite their significance, current Multimodal Large Language Models (MLLMs) often fall short in geologic map understanding.
To quantify this gap, we construct GeoMap-Bench, the first-ever benchmark for evaluating MLLMs in geologic map understanding.
arXiv Detail & Related papers (2025-01-10T18:59:42Z) - A comprehensive GeoAI review: Progress, Challenges and Outlooks [0.0]
Geospatial Artificial Intelligence (GeoAI) has gained traction in the most relevant research works and industrial applications.
This paper offers a comprehensive review of GeoAI as a synergistic concept applying Artificial Intelligence (AI) methods and models to geospatial data.
arXiv Detail & Related papers (2024-12-16T10:41:02Z) - GeoGalactica: A Scientific Large Language Model in Geoscience [95.15911521220052]
Large language models (LLMs) have achieved huge success for their general knowledge and ability to solve a wide spectrum of tasks in natural language processing (NLP)
We specialize an LLM into geoscience, by further pre-training the model with a vast amount of texts in geoscience, as well as supervised fine-tuning (SFT) the resulting model with our custom collected instruction tuning dataset.
We train GeoGalactica over a geoscience-related text corpus containing 65 billion tokens, preserving as the largest geoscience-specific text corpus.
Then we fine-tune the model with 1 million pairs of instruction-tuning
arXiv Detail & Related papers (2023-12-31T09:22:54Z) - GeoAI in Social Science [0.9527350779226282]
GeoAI, or geospatial artificial intelligence, is an exciting new area that leverages artificial intelligence (AI), geospatial big data, and massive computing power to solve problems with high automation and intelligence.
This paper reviews the progress of AI in social science research, highlighting important advancements in using GeoAI to fill critical data and knowledge gaps.
arXiv Detail & Related papers (2023-12-19T20:23:18Z) - Artificial Intelligence and Human Geography [1.6135760596596367]
This paper examines the recent advances and applications of AI in human geography.
It includes the use of machine (deep) learning, including place representation and modeling, spatial analysis and predictive mapping, and urban planning and design.
arXiv Detail & Related papers (2023-12-14T11:20:22Z) - K2: A Foundation Language Model for Geoscience Knowledge Understanding
and Utilization [105.89544876731942]
Large language models (LLMs) have achieved great success in general domains of natural language processing.
We present the first-ever LLM in geoscience, K2, alongside a suite of resources developed to further promote LLM research within geoscience.
arXiv Detail & Related papers (2023-06-08T09:29:05Z) - GeoGLUE: A GeoGraphic Language Understanding Evaluation Benchmark [56.08664336835741]
We propose a GeoGraphic Language Understanding Evaluation benchmark, named GeoGLUE.
We collect data from open-released geographic resources and introduce six natural language understanding tasks.
We pro vide evaluation experiments and analysis of general baselines, indicating the effectiveness and significance of the GeoGLUE benchmark.
arXiv Detail & Related papers (2023-05-11T03:21:56Z) - Philosophical Foundations of GeoAI: Exploring Sustainability, Diversity,
and Bias in GeoAI and Spatial Data Science [1.0152838128195467]
This chapter presents some of the fundamental assumptions and principles that could form the philosophical foundation of GeoAI and spatial data science.
It highlights themes such as sustainability, bias in training data, diversity in schema knowledge, and the (potential lack of) neutrality of GeoAI systems from a unifying ethical perspective.
arXiv Detail & Related papers (2023-03-27T14:01:22Z) - A General Purpose Neural Architecture for Geospatial Systems [142.43454584836812]
We present a roadmap towards the construction of a general-purpose neural architecture (GPNA) with a geospatial inductive bias.
We envision how such a model may facilitate cooperation between members of the community.
arXiv Detail & Related papers (2022-11-04T09:58:57Z) - Data-driven geophysics: from dictionary learning to deep learning [3.6713387874278247]
"Model-driven" approaches to geophysics suffer from the curse of dimensionality and may inaccurately model the subsurface.
"Data-driven" techniques may overcome these issues with increasingly available geophysical data.
arXiv Detail & Related papers (2020-07-13T04:39:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.