論文の概要: Diffusion Models for Smarter UAVs: Decision-Making and Modeling
- arxiv url: http://arxiv.org/abs/2501.05819v1
- Date: Fri, 10 Jan 2025 09:59:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-13 15:28:12.308876
- Title: Diffusion Models for Smarter UAVs: Decision-Making and Modeling
- Title(参考訳): よりスマートなUAVのための拡散モデル:意思決定とモデリング
- Authors: Yousef Emami, Hao Zhou, Luis Almeida, Kai Li,
- Abstract要約: 無人航空機(UAV)は、現代の通信ネットワークにおいてますます採用されている。
しかし、意思決定とデジタルモデリングの課題は、その急速な進歩を妨げ続けている。
本稿では,これらの課題を効果的に解決するために,DMとRL,DTの統合について検討する。
- 参考スコア(独自算出の注目度): 15.093742222365156
- License:
- Abstract: Unmanned Aerial Vehicles (UAVs) are increasingly adopted in modern communication networks. However, challenges in decision-making and digital modeling continue to impede their rapid advancement. Reinforcement Learning (RL) algorithms face limitations such as low sample efficiency and limited data versatility, further magnified in UAV communication scenarios. Moreover, Digital Twin (DT) modeling introduces substantial decision-making and data management complexities. RL models, often integrated into DT frameworks, require extensive training data to achieve accurate predictions. In contrast to traditional approaches that focus on class boundaries, Diffusion Models (DMs), a new class of generative AI, learn the underlying probability distribution from the training data and can generate trustworthy new patterns based on this learned distribution. This paper explores the integration of DMs with RL and DT to effectively address these challenges. By combining the data generation capabilities of DMs with the decision-making framework of RL and the modeling accuracy of DT, the integration improves the adaptability and real-time performance of UAV communication. Moreover, the study shows how DMs can alleviate data scarcity, improve policy networks, and optimize dynamic modeling, providing a robust solution for complex UAV communication scenarios.
- Abstract(参考訳): 無人航空機(UAV)は、現代の通信ネットワークにおいてますます採用されている。
しかし、意思決定とデジタルモデリングの課題は、その急速な進歩を妨げ続けている。
強化学習(Reinforcement Learning, RL)アルゴリズムは,UAV通信のシナリオにおいて,サンプル効率の低下やデータ汎用性の向上といった制限に直面している。
さらに、Digital Twin(DT)モデリングは意思決定とデータ管理の複雑さを導入している。
DTフレームワークに統合されるRLモデルは、正確な予測を達成するために広範なトレーニングデータを必要とする。
クラス境界にフォーカスする従来のアプローチとは対照的に、新しい生成AIのクラスである拡散モデル(DM)は、トレーニングデータから基礎となる確率分布を学習し、この学習された分布に基づいて信頼できる新しいパターンを生成することができる。
本稿では,これらの課題を効果的に解決するために,DMとRL,DTの統合について検討する。
DMのデータ生成能力とRLの意思決定フレームワークとDTのモデリング精度を組み合わせることで、UAV通信の適応性とリアルタイム性能を向上させることができる。
さらに、この研究は、DMがデータの不足を緩和し、ポリシーネットワークを改善し、動的モデリングを最適化し、複雑なUAV通信シナリオに対して堅牢なソリューションを提供する方法を示している。
関連論文リスト
- Model-Based Diffusion for Trajectory Optimization [8.943418808959494]
データ無しで軌道最適化(TO)問題を解決するために拡散法を用いた最適化手法であるモデルベース拡散(MBD)を導入する。
MBDは外部データを必要としないが、様々な性質のデータと自然に統合して拡散過程を制御できる。
MBDは、最先端の強化学習とサンプリングベースのTOメソッドを上回り、コンタクトリッチなタスクに挑戦する。
論文 参考訳(メタデータ) (2024-05-28T22:14:25Z) - Task-agnostic Decision Transformer for Multi-type Agent Control with Federated Split Training [34.80971707794908]
Federated Split Decision Transformer (FSDT)は、AIエージェント決定タスク用に明示的に設計された革新的なフレームワークである。
FSDTフレームワークは、トレーニングに分散データを活用することで、パーソナライズされたエージェントの複雑さをナビゲートする。
本研究は、分散オフライン強化学習データを効果的に活用し、強力なマルチタイプエージェント決定システムを実現するためのFSDTフレームワークの有効性を裏付けるものである。
論文 参考訳(メタデータ) (2024-05-22T08:37:37Z) - MMA-DFER: MultiModal Adaptation of unimodal models for Dynamic Facial Expression Recognition in-the-wild [81.32127423981426]
実世界のアプリケーションでは,音声およびビデオデータに基づくマルチモーダル感情認識が重要である。
近年の手法は、強力なマルチモーダルエンコーダの事前学習に自己教師付き学習(SSL)の進歩を活用することに重点を置いている。
SSL-pre-trained disimodal encoders を用いて,この問題に対する異なる視点とマルチモーダル DFER の性能向上について検討する。
論文 参考訳(メタデータ) (2024-04-13T13:39:26Z) - DIMAT: Decentralized Iterative Merging-And-Training for Deep Learning Models [21.85879890198875]
Decentralized Iterative Merging-And-Training (DIMAT) は、新しい分散深層学習アルゴリズムである。
DIMATは, 独立・同一分散(IID)および非IIDデータを用いて, 通信オーバヘッドの低減を図ることにより, より高速かつ高い初期ゲインが得られることを示す。
このDIMATパラダイムは未来の分散学習に新たな機会を与え、疎結合な通信計算で現実世界への適応性を高める。
論文 参考訳(メタデータ) (2024-04-11T18:34:29Z) - Diffusion-Based Neural Network Weights Generation [80.89706112736353]
D2NWGは拡散に基づくニューラルネットワーク重み生成技術であり、転送学習のために高性能な重みを効率よく生成する。
本稿では,ニューラルネットワーク重み生成のための遅延拡散パラダイムを再放送するために,生成的ハイパー表現学習を拡張した。
我々のアプローチは大規模言語モデル(LLM)のような大規模アーキテクチャにスケーラブルであり、現在のパラメータ生成技術の限界を克服しています。
論文 参考訳(メタデータ) (2024-02-28T08:34:23Z) - Diffusion Models for Wireless Communications [12.218161437914118]
無線通信システムにおける拡散モデルの適用について概説する。
重要なアイデアは、データ生成プロセスを"デノイング"ステップで分解し、徐々にノイズからサンプルを生成することです。
本稿では,AIネイティブ通信システムの開発において拡散モデルをどのように活用できるかを示す。
論文 参考訳(メタデータ) (2023-10-11T08:57:59Z) - Towards a Better Theoretical Understanding of Independent Subnetwork Training [56.24689348875711]
独立サブネットワークトレーニング(IST)の理論的考察
ISTは、上記の問題を解決するための、最近提案され、非常に効果的である。
圧縮通信を用いた分散手法など,ISTと代替手法の基本的な違いを同定する。
論文 参考訳(メタデータ) (2023-06-28T18:14:22Z) - Training Deep Surrogate Models with Large Scale Online Learning [48.7576911714538]
ディープラーニングアルゴリズムは、PDEの高速解を得るための有効な代替手段として登場した。
モデルは通常、ソルバによって生成された合成データに基づいてトレーニングされ、ディスクに格納され、トレーニングのために読み返される。
ディープサロゲートモデルのためのオープンソースのオンライントレーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2023-06-28T12:02:27Z) - Diffusion Model is an Effective Planner and Data Synthesizer for
Multi-Task Reinforcement Learning [101.66860222415512]
Multi-Task Diffusion Model (textscMTDiff) は、トランスフォーマーのバックボーンを組み込んだ拡散に基づく手法であり、生成計画とデータ合成のための素早い学習を行う。
生成計画において、textscMTDiffはMeta-World上の50のタスクとMaze2D上の8のマップで最先端のアルゴリズムより優れています。
論文 参考訳(メタデータ) (2023-05-29T05:20:38Z) - Enhancing Multiple Reliability Measures via Nuisance-extended
Information Bottleneck [77.37409441129995]
トレーニングデータに制限がある現実的なシナリオでは、データ内の多くの予測信号は、データ取得のバイアスからより多く得る。
我々は,相互情報制約の下で,より広い範囲の摂動をカバーできる敵の脅威モデルを考える。
そこで本研究では,その目的を実現するためのオートエンコーダベーストレーニングと,提案したハイブリッド識別世代学習を促進するための実用的なエンコーダ設計を提案する。
論文 参考訳(メタデータ) (2023-03-24T16:03:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。