Annealing Machine-assisted Learning of Graph Neural Network for Combinatorial Optimization
- URL: http://arxiv.org/abs/2501.05845v1
- Date: Fri, 10 Jan 2025 10:36:46 GMT
- Title: Annealing Machine-assisted Learning of Graph Neural Network for Combinatorial Optimization
- Authors: Pablo Loyola, Kento Hasegawa, Andres Hoyos-Idobro, Kazuo Ono, Toyotaro Suzumura, Yu Hirate, Masanao Yamaoka,
- Abstract summary: Annealing Machines (AM) have shown increasing capabilities in solving complex problems.
Graph Neural Networks (GNN) have been recently adapted to solve problems.
We propose a merging approach that aims at retaining both the accuracy exhibited by AMs and the representational flexibility and scalability of GNNs.
- Score: 2.0643665408482517
- License:
- Abstract: While Annealing Machines (AM) have shown increasing capabilities in solving complex combinatorial problems, positioning themselves as a more immediate alternative to the expected advances of future fully quantum solutions, there are still scaling limitations. In parallel, Graph Neural Networks (GNN) have been recently adapted to solve combinatorial problems, showing competitive results and potentially high scalability due to their distributed nature. We propose a merging approach that aims at retaining both the accuracy exhibited by AMs and the representational flexibility and scalability of GNNs. Our model considers a compression step, followed by a supervised interaction where partial solutions obtained from the AM are used to guide local GNNs from where node feature representations are obtained and combined to initialize an additional GNN-based solver that handles the original graph's target problem. Intuitively, the AM can solve the combinatorial problem indirectly by infusing its knowledge into the GNN. Experiments on canonical optimization problems show that the idea is feasible, effectively allowing the AM to solve size problems beyond its original limits.
Related papers
- Towards graph neural networks for provably solving convex optimization problems [5.966097889241178]
We propose an iterative MPNN framework to solve convex optimization problems with provable feasibility guarantees.
Experimental results show that our approach outperforms existing neural baselines in solution quality and feasibility.
arXiv Detail & Related papers (2025-02-04T16:11:41Z) - Assessing and Enhancing Graph Neural Networks for Combinatorial Optimization: Novel Approaches and Application in Maximum Independent Set Problems [0.0]
Graph Neural Networks (GNNs) show promise for researchers in solving Combinatorial optimization (CO) problems.
This study investigates the effectiveness of GNNs in solving the maximum independent set (MIS) problem.
arXiv Detail & Related papers (2024-11-06T09:12:31Z) - Enhancing GNNs Performance on Combinatorial Optimization by Recurrent Feature Update [0.09986418756990156]
We introduce a novel algorithm, denoted hereafter as QRF-GNN, leveraging the power of GNNs to efficiently solve Combinatorial optimization (CO) problems.
It relies on unsupervised learning by minimizing the loss function derived from QUBO relaxation.
Results of experiments show that QRF-GNN drastically surpasses existing learning-based approaches and is comparable to the state-of-the-art conventionals.
arXiv Detail & Related papers (2024-07-23T13:34:35Z) - Decision-focused Graph Neural Networks for Combinatorial Optimization [62.34623670845006]
An emerging strategy to tackle optimization problems involves the adoption of graph neural networks (GNNs) as an alternative to traditional algorithms.
Despite the growing popularity of GNNs and traditional algorithm solvers in the realm of CO, there is limited research on their integrated use and the correlation between them within an end-to-end framework.
We introduce a decision-focused framework that utilizes GNNs to address CO problems with auxiliary support.
arXiv Detail & Related papers (2024-06-05T22:52:27Z) - Deploying Graph Neural Networks in Wireless Networks: A Link Stability Viewpoint [13.686715722390149]
Graph neural networks (GNNs) have exhibited promising performance across a wide range of graph applications.
In wireless systems communication among nodes are usually due to wireless fading and receiver noise consequently in degradation of GNNs.
arXiv Detail & Related papers (2024-05-09T14:37:08Z) - ILP-based Resource Optimization Realized by Quantum Annealing for Optical Wide-area Communication Networks -- A Framework for Solving Combinatorial Problems of a Real-world Application by Quantum Annealing [5.924780594614675]
In recent works we demonstrated how such a problem could be cast as a quadratic unconstrained binary optimization (QUBO) problem that can be embedded onto the D-Wave AdvantageTM quantum annealer system.
Here we report on our investigations for optimizing system parameters, and how we incorporate machine learning (ML) techniques to further improve on the quality of solutions.
We successfully implement this NN in a simple integer linear programming (ILP) example, demonstrating how the NN can fully map out the solution space that was not captured by D-Wave.
arXiv Detail & Related papers (2024-01-01T17:52:58Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
We propose DEGREE to provide a faithful explanation for GNN predictions.
By decomposing the information generation and aggregation mechanism of GNNs, DEGREE allows tracking the contributions of specific components of the input graph to the final prediction.
We also design a subgraph level interpretation algorithm to reveal complex interactions between graph nodes that are overlooked by previous methods.
arXiv Detail & Related papers (2023-05-22T10:29:52Z) - Improved Training of Physics-Informed Neural Networks with Model
Ensembles [81.38804205212425]
We propose to expand the solution interval gradually to make the PINN converge to the correct solution.
All ensemble members converge to the same solution in the vicinity of observed data.
We show experimentally that the proposed method can improve the accuracy of the found solution.
arXiv Detail & Related papers (2022-04-11T14:05:34Z) - dNNsolve: an efficient NN-based PDE solver [62.997667081978825]
We introduce dNNsolve, that makes use of dual Neural Networks to solve ODEs/PDEs.
We show that dNNsolve is capable of solving a broad range of ODEs/PDEs in 1, 2 and 3 spacetime dimensions.
arXiv Detail & Related papers (2021-03-15T19:14:41Z) - A Unified View on Graph Neural Networks as Graph Signal Denoising [49.980783124401555]
Graph Neural Networks (GNNs) have risen to prominence in learning representations for graph structured data.
In this work, we establish mathematically that the aggregation processes in a group of representative GNN models can be regarded as solving a graph denoising problem.
We instantiate a novel GNN model, ADA-UGNN, derived from UGNN, to handle graphs with adaptive smoothness across nodes.
arXiv Detail & Related papers (2020-10-05T04:57:18Z) - Graph Neural Networks for Motion Planning [108.51253840181677]
We present two techniques, GNNs over dense fixed graphs for low-dimensional problems and sampling-based GNNs for high-dimensional problems.
We examine the ability of a GNN to tackle planning problems such as identifying critical nodes or learning the sampling distribution in Rapidly-exploring Random Trees (RRT)
Experiments with critical sampling, a pendulum and a six DoF robot arm show GNNs improve on traditional analytic methods as well as learning approaches using fully-connected or convolutional neural networks.
arXiv Detail & Related papers (2020-06-11T08:19:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.