Deploying Graph Neural Networks in Wireless Networks: A Link Stability Viewpoint
- URL: http://arxiv.org/abs/2405.05802v1
- Date: Thu, 9 May 2024 14:37:08 GMT
- Title: Deploying Graph Neural Networks in Wireless Networks: A Link Stability Viewpoint
- Authors: Jun Li, Weiwei Zhang, Kang Wei, Guangji Chen, Long Shi, Wen Chen,
- Abstract summary: Graph neural networks (GNNs) have exhibited promising performance across a wide range of graph applications.
In wireless systems communication among nodes are usually due to wireless fading and receiver noise consequently in degradation of GNNs.
- Score: 13.686715722390149
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As an emerging artificial intelligence technology, graph neural networks (GNNs) have exhibited promising performance across a wide range of graph-related applications. However, information exchanges among neighbor nodes in GNN pose new challenges in the resource-constrained scenario, especially in wireless systems. In practical wireless systems, the communication links among nodes are usually unreliable due to wireless fading and receiver noise, consequently resulting in performance degradation of GNNs. To improve the learning performance of GNNs, we aim to maximize the number of long-term average (LTA) communication links by the optimized power control under energy consumption constraints. Using the Lyapunov optimization method, we first transform the intractable long-term problem into a deterministic problem in each time slot by converting the long-term energy constraints into the objective function. In spite of this non-convex combinatorial optimization problem, we address this problem via equivalently solving a sequence of convex feasibility problems together with a greedy based solver. Simulation results demonstrate the superiority of our proposed scheme over the baselines.
Related papers
- Accelerating Graph Neural Networks via Edge Pruning for Power Allocation in Wireless Networks [9.031738020845586]
Graph Neural Networks (GNNs) have emerged as a promising approach to tackling power allocation problems in wireless networks.
We introduce a neighbour-based threshold approach to GNNs to reduce the time complexity.
Our results show that our proposed N-GNN offer significant advantages in terms of reducing time complexity while preserving strong performance and generalisation capacity.
arXiv Detail & Related papers (2023-05-22T02:22:14Z) - Graph Neural Networks for Power Allocation in Wireless Networks with
Full Duplex Nodes [10.150768420975155]
Due to mutual interference between users, power allocation problems in wireless networks are often non-trivial.
Graph Graph neural networks (GNNs) have recently emerged as a promising approach tackling these problems and an approach exploits underlying topology of wireless networks.
arXiv Detail & Related papers (2023-03-27T10:59:09Z) - Flex-Net: A Graph Neural Network Approach to Resource Management in
Flexible Duplex Networks [11.89735327420275]
This work investigates the sum-rate of flexible networks without static time scheduling.
Motivated by the recent success of Graph Networks Networks (GNNs) in solving NP-hard wireless resource management problems, we propose a novel GNN architecture, named Flex-Net.
arXiv Detail & Related papers (2023-01-20T12:49:21Z) - Learning Cooperative Beamforming with Edge-Update Empowered Graph Neural
Networks [29.23937571816269]
We propose an edge-graph-neural-network (Edge-GNN) to learn the cooperative beamforming on the graph edges.
The proposed Edge-GNN achieves higher sum rate with much shorter computation time than state-of-the-art approaches.
arXiv Detail & Related papers (2022-11-23T02:05:06Z) - Unsupervised Optimal Power Flow Using Graph Neural Networks [172.33624307594158]
We use a graph neural network to learn a nonlinear parametrization between the power demanded and the corresponding allocation.
We show through simulations that the use of GNNs in this unsupervised learning context leads to solutions comparable to standard solvers.
arXiv Detail & Related papers (2022-10-17T17:30:09Z) - Learning Autonomy in Management of Wireless Random Networks [102.02142856863563]
This paper presents a machine learning strategy that tackles a distributed optimization task in a wireless network with an arbitrary number of randomly interconnected nodes.
We develop a flexible deep neural network formalism termed distributed message-passing neural network (DMPNN) with forward and backward computations independent of the network topology.
arXiv Detail & Related papers (2021-06-15T09:03:28Z) - Fast Power Control Adaptation via Meta-Learning for Random Edge Graph
Neural Networks [39.59987601426039]
This paper studies the higher-level problem of enabling fast adaption of the power control policy to time-varying topologies.
We apply first-order meta-learning on data from multiple topologies with the aim of optimizing for a few-shot adaptation to new network configurations.
arXiv Detail & Related papers (2021-05-02T12:43:10Z) - Resource Allocation via Graph Neural Networks in Free Space Optical
Fronthaul Networks [119.81868223344173]
This paper investigates the optimal resource allocation in free space optical (FSO) fronthaul networks.
We consider the graph neural network (GNN) for the policy parameterization to exploit the FSO network structure.
The primal-dual learning algorithm is developed to train the GNN in a model-free manner, where the knowledge of system models is not required.
arXiv Detail & Related papers (2020-06-26T14:20:48Z) - Graph Neural Networks for Motion Planning [108.51253840181677]
We present two techniques, GNNs over dense fixed graphs for low-dimensional problems and sampling-based GNNs for high-dimensional problems.
We examine the ability of a GNN to tackle planning problems such as identifying critical nodes or learning the sampling distribution in Rapidly-exploring Random Trees (RRT)
Experiments with critical sampling, a pendulum and a six DoF robot arm show GNNs improve on traditional analytic methods as well as learning approaches using fully-connected or convolutional neural networks.
arXiv Detail & Related papers (2020-06-11T08:19:06Z) - Wireless Power Control via Counterfactual Optimization of Graph Neural
Networks [124.89036526192268]
We consider the problem of downlink power control in wireless networks, consisting of multiple transmitter-receiver pairs communicating over a single shared wireless medium.
To mitigate the interference among concurrent transmissions, we leverage the network topology to create a graph neural network architecture.
We then use an unsupervised primal-dual counterfactual optimization approach to learn optimal power allocation decisions.
arXiv Detail & Related papers (2020-02-17T07:54:39Z) - Channel Assignment in Uplink Wireless Communication using Machine
Learning Approach [54.012791474906514]
This letter investigates a channel assignment problem in uplink wireless communication systems.
Our goal is to maximize the sum rate of all users subject to integer channel assignment constraints.
Due to high computational complexity, machine learning approaches are employed to obtain computational efficient solutions.
arXiv Detail & Related papers (2020-01-12T15:54:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.