論文の概要: LLMs Reproduce Stereotypes of Sexual and Gender Minorities
- arxiv url: http://arxiv.org/abs/2501.05926v1
- Date: Fri, 10 Jan 2025 12:46:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-13 15:27:40.262594
- Title: LLMs Reproduce Stereotypes of Sexual and Gender Minorities
- Title(参考訳): LLMは性・性マイノリティのステレオタイプを再現する
- Authors: Ruby Ostrow, Adam Lopez,
- Abstract要約: 我々は、二進圏を超えた性や性別のマイノリティに対する大きな言語モデルのバイアスについて研究する。
分析の結果, LLMは創造的執筆において性・性マイノリティのステレオタイプ表現を生成することがわかった。
- 参考スコア(独自算出の注目度): 7.068680287596106
- License:
- Abstract: A large body of research has found substantial gender bias in NLP systems. Most of this research takes a binary, essentialist view of gender: limiting its variation to the categories _men_ and _women_, conflating gender with sex, and ignoring different sexual identities. But gender and sexuality exist on a spectrum, so in this paper we study the biases of large language models (LLMs) towards sexual and gender minorities beyond binary categories. Grounding our study in a widely used psychological framework -- the Stereotype Content Model -- we demonstrate that English-language survey questions about social perceptions elicit more negative stereotypes of sexual and gender minorities from LLMs, just as they do from humans. We then extend this framework to a more realistic use case: text generation. Our analysis shows that LLMs generate stereotyped representations of sexual and gender minorities in this setting, raising concerns about their capacity to amplify representational harms in creative writing, a widely promoted use case.
- Abstract(参考訳): 多くの研究機関が、NLPシステムにかなりの性別偏見を見出している。
この研究の多くは、性別を二分的、本質的な視点で捉えており、そのバリエーションを_men_と_women_に限定し、性別を性と混同し、異なる性同一性を無視している。
しかし、性別とセクシュアリティはスペクトル上に存在するため、本論文では、二進圏を超えた性的・性的なマイノリティに対する大きな言語モデル(LLM)のバイアスについて検討する。
我々の研究を広く使われている心理学的枠組みであるステレオタイプ・コンテント・モデル(Stereotype Content Model)で基礎づけることで、英語による社会的な知覚に関する質問が、LLMからより否定的な性的・性別的マイノリティのステレオタイプを引き出すことを示した。
そして、このフレームワークをより現実的なユースケース、すなわちテキスト生成に拡張します。
本研究は, LLMが性的・性的マイノリティのステレオタイプ表現を生成することを示し, 創造的著作における表現的害を増幅する能力に対する懸念を提起するものである。
関連論文リスト
- GenderCARE: A Comprehensive Framework for Assessing and Reducing Gender Bias in Large Language Models [73.23743278545321]
大規模言語モデル(LLM)は、自然言語生成において顕著な能力を示してきたが、社会的バイアスを増大させることも観察されている。
GenderCAREは、革新的な基準、バイアス評価、リダクションテクニック、評価メトリクスを含む包括的なフレームワークである。
論文 参考訳(メタデータ) (2024-08-22T15:35:46Z) - From 'Showgirls' to 'Performers': Fine-tuning with Gender-inclusive Language for Bias Reduction in LLMs [1.1049608786515839]
我々は、ジェンダー・インクリシティを促進するために、大規模言語モデル内の言語構造に適応する。
私たちの作品の焦点は英語の「In'show-Girl'」や「man-cave」のような男女排他的な接尾辞である。
論文 参考訳(メタデータ) (2024-07-05T11:31:30Z) - Protected group bias and stereotypes in Large Language Models [2.1122940074160357]
本稿では,倫理と公正の領域におけるLarge Language Models(LLM)の振る舞いについて考察する。
マイノリティ化されたグループに偏見はありますが、特に性別やセクシュアリティの領域では、西洋の偏見も見られます。
論文 参考訳(メタデータ) (2024-03-21T00:21:38Z) - Disclosure and Mitigation of Gender Bias in LLMs [64.79319733514266]
大規模言語モデル(LLM)はバイアス応答を生成することができる。
条件生成に基づく間接探索フレームワークを提案する。
LLMにおける明示的・暗黙的な性バイアスを明らかにするための3つの戦略を探求する。
論文 参考訳(メタデータ) (2024-02-17T04:48:55Z) - Probing Explicit and Implicit Gender Bias through LLM Conditional Text
Generation [64.79319733514266]
大規模言語モデル(LLM)はバイアスと有害な応答を生成する。
本研究では,あらかじめ定義されたジェンダーフレーズやステレオタイプを必要としない条件付きテキスト生成機構を提案する。
論文 参考訳(メタデータ) (2023-11-01T05:31:46Z) - "Kelly is a Warm Person, Joseph is a Role Model": Gender Biases in
LLM-Generated Reference Letters [97.11173801187816]
大規模言語モデル(LLM)は、個人が様々な種類のコンテンツを書くのを支援する効果的なツールとして最近登場した。
本稿では, LLM 生成した参照文字の性別バイアスについて批判的に検討する。
論文 参考訳(メタデータ) (2023-10-13T16:12:57Z) - Gender bias and stereotypes in Large Language Models [0.6882042556551611]
本稿では,ジェンダーステレオタイプに関する大規模言語モデルの振る舞いについて考察する。
我々は、WinoBiasとは違って、性別バイアスの存在をテストするための単純なパラダイムを用いています。
a) LLMは、人の性別とステレオタイプ的に一致した職業を選択する確率が3~6倍、(b) これらの選択は、公務員の統計に反映された基礎的真実よりも人々の知覚に適合し、(d) LLMは、我々の研究項目の95%の時間において重要な曖昧さを無視する。
論文 参考訳(メタデータ) (2023-08-28T22:32:05Z) - Stereotypes and Smut: The (Mis)representation of Non-cisgender
Identities by Text-to-Image Models [6.92043136971035]
マルチモーダルモデルが男女同一性をどのように扱うかを検討する。
特定の非シスジェンダーのアイデンティティは、人間より少なく、ステレオタイプで、性的にも、一貫して(ミス)表現されている。
これらの改善は、影響のあるコミュニティによって変革が導かれる未来への道を開く可能性がある。
論文 参考訳(メタデータ) (2023-05-26T16:28:49Z) - "I'm fully who I am": Towards Centering Transgender and Non-Binary
Voices to Measure Biases in Open Language Generation [69.25368160338043]
トランスジェンダーとノンバイナリ(TGNB)の個人は、日常生活から差別や排除を不当に経験している。
オープン・ランゲージ・ジェネレーションにおいて,経験豊富なTGNB人物の疎外化を取り巻く社会的現実がいかに貢献し,持続するかを評価する。
我々はTGNB指向のコミュニティからキュレートされたテンプレートベースの実世界のテキストのデータセットであるTANGOを紹介する。
論文 参考訳(メタデータ) (2023-05-17T04:21:45Z) - Multi-Dimensional Gender Bias Classification [67.65551687580552]
機械学習モデルは、性別に偏ったテキストでトレーニングする際に、社会的に望ましくないパターンを不注意に学習することができる。
本稿では,テキスト中の性バイアスを複数の実用的・意味的な次元に沿って分解する一般的な枠組みを提案する。
このきめ細かいフレームワークを用いて、8つの大規模データセットにジェンダー情報を自動的にアノテートする。
論文 参考訳(メタデータ) (2020-05-01T21:23:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。