BRIGHT: A globally distributed multimodal building damage assessment dataset with very-high-resolution for all-weather disaster response
- URL: http://arxiv.org/abs/2501.06019v1
- Date: Fri, 10 Jan 2025 14:57:18 GMT
- Title: BRIGHT: A globally distributed multimodal building damage assessment dataset with very-high-resolution for all-weather disaster response
- Authors: Hongruixuan Chen, Jian Song, Olivier Dietrich, Clifford Broni-Bediako, Weihao Xuan, Junjue Wang, Xinlei Shao, Yimin Wei, Junshi Xia, Cuiling Lan, Konrad Schindler, Naoto Yokoya,
- Abstract summary: Building damage assessment (BDA) is an essential capability in the aftermath of a disaster to reduce human casualties.
Recent research focuses on the development of AI models to achieve accurate mapping of unseen disaster events.
We present a BDA dataset using veRy-hIGH-resoluTion optical and SAR imagery (BRIGHT) to support AI-based all-weather disaster response.
- Score: 37.37991234180912
- License:
- Abstract: Disaster events occur around the world and cause significant damage to human life and property. Earth observation (EO) data enables rapid and comprehensive building damage assessment (BDA), an essential capability in the aftermath of a disaster to reduce human casualties and to inform disaster relief efforts. Recent research focuses on the development of AI models to achieve accurate mapping of unseen disaster events, mostly using optical EO data. However, solutions based on optical data are limited to clear skies and daylight hours, preventing a prompt response to disasters. Integrating multimodal (MM) EO data, particularly the combination of optical and SAR imagery, makes it possible to provide all-weather, day-and-night disaster responses. Despite this potential, the development of robust multimodal AI models has been constrained by the lack of suitable benchmark datasets. In this paper, we present a BDA dataset using veRy-hIGH-resoluTion optical and SAR imagery (BRIGHT) to support AI-based all-weather disaster response. To the best of our knowledge, BRIGHT is the first open-access, globally distributed, event-diverse MM dataset specifically curated to support AI-based disaster response. It covers five types of natural disasters and two types of man-made disasters across 12 regions worldwide, with a particular focus on developing countries where external assistance is most needed. The optical and SAR imagery in BRIGHT, with a spatial resolution between 0.3-1 meters, provides detailed representations of individual buildings, making it ideal for precise BDA. In our experiments, we have tested seven advanced AI models trained with our BRIGHT to validate the transferability and robustness. The dataset and code are available at https://github.com/ChenHongruixuan/BRIGHT. BRIGHT also serves as the official dataset for the 2025 IEEE GRSS Data Fusion Contest.
Related papers
- BlessemFlood21: Advancing Flood Analysis with a High-Resolution Georeferenced Dataset for Humanitarian Aid Support [34.91321323785173]
We introduce the BlessemFlood21 dataset to stimulate research on efficient flood detection tools.
The imagery was acquired during the 2021 Erftstadt-Blessem flooding event and consists of high-resolution and georeferenced RGB-NIR images.
In the resulting RGB dataset, the images are supplemented with detailed water masks, obtained via a semi-supervised human-in-the-loop technique.
arXiv Detail & Related papers (2024-07-06T08:58:43Z) - Towards Efficient Disaster Response via Cost-effective Unbiased Class Rate Estimation through Neyman Allocation Stratified Sampling Active Learning [11.697034536189094]
We present an innovative algorithm that constructs Neyman stratified random sampling trees for binary classification.
Our findings demonstrate that our method surpasses both passive and conventional active learning techniques.
It effectively addresses the'sampling bias' challenge in traditional active learning strategies.
arXiv Detail & Related papers (2024-05-28T01:34:35Z) - Robust Disaster Assessment from Aerial Imagery Using Text-to-Image Synthetic Data [66.49494950674402]
We leverage emerging text-to-image generative models in creating large-scale synthetic supervision for the task of damage assessment from aerial images.
We build an efficient and easily scalable pipeline to generate thousands of post-disaster images from low-resource domains.
We validate the strength of our proposed framework under cross-geography domain transfer setting from xBD and SKAI images in both single-source and multi-source settings.
arXiv Detail & Related papers (2024-05-22T16:07:05Z) - CrisisMatch: Semi-Supervised Few-Shot Learning for Fine-Grained Disaster
Tweet Classification [51.58605842457186]
We present a fine-grained disaster tweet classification model under the semi-supervised, few-shot learning setting.
Our model, CrisisMatch, effectively classifies tweets into fine-grained classes of interest using few labeled data and large amounts of unlabeled data.
arXiv Detail & Related papers (2023-10-23T07:01:09Z) - AB2CD: AI for Building Climate Damage Classification and Detection [0.0]
We explore the implementation of deep learning techniques for precise building damage assessment in the context of natural hazards.
We tackle the challenges of generalization to novel disasters and regions while accounting for the influence of low-quality and noisy labels.
Our research findings showcase the potential and limitations of advanced AI solutions in enhancing the impact assessment of climate change-induced extreme weather events.
arXiv Detail & Related papers (2023-09-03T03:37:04Z) - Building Coverage Estimation with Low-resolution Remote Sensing Imagery [65.95520230761544]
We propose a method for estimating building coverage using only publicly available low-resolution satellite imagery.
Our model achieves a coefficient of determination as high as 0.968 on predicting building coverage in regions of different levels of development around the world.
arXiv Detail & Related papers (2023-01-04T05:19:33Z) - A Machine learning approach for rapid disaster response based on
multi-modal data. The case of housing & shelter needs [0.0]
One of the most immediate needs of people affected by a disaster is finding shelter.
This paper proposes a machine learning workflow that aims to fuse and rapidly analyse multimodal data.
Based on a database of 19 characteristics for more than 200 disasters worldwide, a fusion approach at the decision level was used.
arXiv Detail & Related papers (2021-07-29T18:22:34Z) - Assessing out-of-domain generalization for robust building damage
detection [78.6363825307044]
Building damage detection can be automated by applying computer vision techniques to satellite imagery.
Models must be robust to a shift in distribution between disaster imagery available for training and the images of the new event.
We argue that future work should focus on the OOD regime instead.
arXiv Detail & Related papers (2020-11-20T10:30:43Z) - Learning from Multimodal and Multitemporal Earth Observation Data for
Building Damage Mapping [17.324397643429638]
We have developed a global multisensor and multitemporal dataset for building damage mapping.
The global dataset contains high-resolution optical imagery and high-to-moderate-resolution multiband SAR data.
We defined a damage mapping framework for the semantic segmentation of damaged buildings based on a deep convolutional neural network algorithm.
arXiv Detail & Related papers (2020-09-14T05:04:19Z) - RescueNet: Joint Building Segmentation and Damage Assessment from
Satellite Imagery [83.49145695899388]
RescueNet is a unified model that can simultaneously segment buildings and assess the damage levels to individual buildings and can be trained end-to-end.
RescueNet is tested on the large scale and diverse xBD dataset and achieves significantly better building segmentation and damage classification performance than previous methods.
arXiv Detail & Related papers (2020-04-15T19:52:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.