論文の概要: How Do Artificial Intelligences Think? The Three Mathematico-Cognitive Factors of Categorical Segmentation Operated by Synthetic Neurons
- arxiv url: http://arxiv.org/abs/2501.06196v1
- Date: Thu, 26 Dec 2024 16:26:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-19 08:38:29.597245
- Title: How Do Artificial Intelligences Think? The Three Mathematico-Cognitive Factors of Categorical Segmentation Operated by Synthetic Neurons
- Title(参考訳): 人工知能はどのように考えるか : 合成ニューロンが操作する分類的セグメンテーションの3つの数学的認知要因
- Authors: Michael Pichat, William Pogrund, Armanush Gasparian, Paloma Pichat, Samuel Demarchi, Michael Veillet-Guillem,
- Abstract要約: 言語モデルにおける合成ニューロンは、どのようにして情報環境をセグメント化し分析する「思考」カテゴリを作成するのか?
本研究は, プライミング, 注意, カテゴリー的思考という概念を通してこれらの概念を探求する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: How do the synthetic neurons in language models create "thought categories" to segment and analyze their informational environment? What are the cognitive characteristics, at the very level of formal neurons, of this artificial categorical thought? Based on the mathematical nature of algebraic operations inherent to neuronal aggregation functions, we attempt to identify mathematico-cognitive factors that genetically shape the categorical reconstruction of the informational world faced by artificial cognition. This study explores these concepts through the notions of priming, attention, and categorical phasing.
- Abstract(参考訳): 言語モデルにおける合成ニューロンは、どのようにして情報環境をセグメント化し分析する「思考カテゴリー」を作成するのか?
この人工カテゴリー思考の認知的特徴は、フォーマルニューロンのレベルにおいて何なのか?
神経集合関数に固有の代数的操作の数学的性質に基づいて,人工的な認知によって直面する情報世界のカテゴリー的再構築を遺伝的に形成する数学的認知因子を同定する。
本研究は, プライミング, 注意, カテゴリー的思考という概念を通して, これらの概念を探求する。
関連論文リスト
- Neuropsychology and Explainability of AI: A Distributional Approach to the Relationship Between Activation Similarity of Neural Categories in Synthetic Cognition [0.11235145048383502]
本稿では,人間の認知トークンの概念を応用した,人工ニューラルネットワークの説明可能性へのアプローチを提案する。
ニューロンが生成するカテゴリセグメントは、実際には入力ベクトル空間内のカテゴリサブ次元の重ね合わせの結果であることを示す。
論文 参考訳(メタデータ) (2024-10-23T05:27:09Z) - Neuropsychology of AI: Relationship Between Activation Proximity and Categorical Proximity Within Neural Categories of Synthetic Cognition [0.11235145048383502]
本研究は,認知心理学における新たな研究対象として,合成ニューラルコグニションに焦点を当てた。
目標は、言語モデルのニューラルネットワークをより説明しやすくすることだ。
このアプローチは、認知心理学から人工神経認知の解釈的構築への概念の変換を含む。
論文 参考訳(メタデータ) (2024-10-08T12:34:13Z) - Psychology of Artificial Intelligence: Epistemological Markers of the Cognitive Analysis of Neural Networks [0.0]
アシモフが1950年に予言した人工知能の心理学は、このAIの探索と説明可能性に敏感な物質の研究を目的としている。
後者を調べるための前提条件は、その現象学に起因する認知状態に関するいくつかのマイルストーンを明らかにすることである。
論文 参考訳(メタデータ) (2024-07-04T12:53:05Z) - Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
本稿では,神経生物学にインスパイアされた,あるいは動機付けられた人工ニューラルネットワークにおける信用割当を行うアルゴリズムについて検討する。
我々は、脳にインスパイアされた学習スキームを6つの一般的なファミリーにまとめ、これらを誤りのバックプロパゲーションの文脈で検討する。
本研究の成果は,神経ミメティックシステムとその構成的学習プロセスの今後の発展を促進することを目的としている。
論文 参考訳(メタデータ) (2023-12-01T05:20:57Z) - A Neuro-mimetic Realization of the Common Model of Cognition via Hebbian
Learning and Free Energy Minimization [55.11642177631929]
大規模なニューラル生成モデルは、意味的に豊富なテキストのパスを合成したり、複雑な画像を生成することができる。
我々はコモン・モデル・オブ・コグニティブ・ニューラル・ジェネレーティブ・システムについて論じる。
論文 参考訳(メタデータ) (2023-10-14T23:28:48Z) - Constraints on the design of neuromorphic circuits set by the properties
of neural population codes [61.15277741147157]
脳内では、情報はコード化され、伝達され、行動を伝えるために使用される。
ニューロモルフィック回路は、脳内のニューロンの集団が使用するものと互換性のある方法で情報を符号化する必要がある。
論文 参考訳(メタデータ) (2022-12-08T15:16:04Z) - Disentanglement with Biological Constraints: A Theory of Functional Cell
Types [20.929056085868613]
この研究は、脳内の単一ニューロンが単一の人間の解釈可能な要素をしばしば表す理由を数学的に理解する。
また、脳表象の構造を形作る理解タスク構造へと進む。
論文 参考訳(メタデータ) (2022-09-30T14:27:28Z) - Compositional Processing Emerges in Neural Networks Solving Math
Problems [100.80518350845668]
人工知能の最近の進歩は、大きなモデルが十分な言語データに基づいて訓練されると、文法構造が表現に現れることを示している。
我々は、この研究を数学的推論の領域にまで拡張し、どのように意味を構成するべきかについての正確な仮説を定式化することができる。
私たちの研究は、ニューラルネットワークがトレーニングデータに暗黙的に構造化された関係について何かを推測できるだけでなく、個々の意味の合成を合成全体へと導くために、この知識を展開できることを示している。
論文 参考訳(メタデータ) (2021-05-19T07:24:42Z) - A Neural Dynamic Model based on Activation Diffusion and a
Micro-Explanation for Cognitive Operations [4.416484585765028]
記憶の神経機構は、人工知能における表現の問題と非常に密接な関係を持っている。
脳内のニューロンのネットワークとその情報処理のシミュレーションを行う計算モデルが提案された。
論文 参考訳(メタデータ) (2020-11-27T01:34:08Z) - Compositional Explanations of Neurons [52.71742655312625]
本稿では, 合成論理的概念を同定し, 深部表現におけるニューロンの説明手順について述べる。
本稿では,視覚と自然言語処理のモデルにおける解釈可能性に関するいくつかの疑問に答えるために,この手順を用いる。
論文 参考訳(メタデータ) (2020-06-24T20:37:05Z) - Towards a Neural Model for Serial Order in Frontal Cortex: a Brain
Theory from Memory Development to Higher-Level Cognition [53.816853325427424]
そこで本研究では,未熟な前頭前野 (PFC) が側頭葉信号の階層的パターンを検出する主要な機能を利用していることを提案する。
我々の仮説では、PFCは順序パターンの形で時間的配列の階層構造を検出し、それらを脳の異なる部分で階層的に情報をインデックスするために利用する。
これにより、抽象的な知識を操作し、時間的に順序付けられた情報を計画するための言語対応の脳にツールを提供する。
論文 参考訳(メタデータ) (2020-05-22T14:29:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。