asanAI: In-Browser, No-Code, Offline-First Machine Learning Toolkit
- URL: http://arxiv.org/abs/2501.06226v1
- Date: Tue, 07 Jan 2025 12:47:52 GMT
- Title: asanAI: In-Browser, No-Code, Offline-First Machine Learning Toolkit
- Authors: Norman Koch, Siavash Ghiasvand,
- Abstract summary: asanAI is an offline-first, open-source, no-code machine learning toolkit designed for users of all skill levels.
It allows individuals to design, debug, train, and test ML models directly in a web browser.
The toolkit runs on any device with a modern web browser, including smartphones, and ensures user privacy through local computations.
- Score: 0.0
- License:
- Abstract: Machine learning (ML) has become crucial in modern life, with growing interest from researchers and the public. Despite its potential, a significant entry barrier prevents widespread adoption, making it challenging for non-experts to understand and implement ML techniques. The increasing desire to leverage ML is counterbalanced by its technical complexity, creating a gap between potential and practical application. This work introduces asanAI, an offline-first, open-source, no-code machine learning toolkit designed for users of all skill levels. It allows individuals to design, debug, train, and test ML models directly in a web browser, eliminating the need for software installations and coding. The toolkit runs on any device with a modern web browser, including smartphones, and ensures user privacy through local computations while utilizing WebGL for enhanced GPU performance. Users can quickly experiment with neural networks and train custom models using various data sources, supported by intuitive visualizations of network structures and data flows. asanAI simplifies the teaching of ML concepts in educational settings and is released under an open-source MIT license, encouraging modifications. It also supports exporting models in industry-ready formats, empowering a diverse range of users to effectively learn and apply machine learning in their projects. The proposed toolkit is successfully utilized by researchers of ScaDS.AI to swiftly draft and test machine learning ideas, by trainers to effectively educate enthusiasts, and by teachers to introduce contemporary ML topics in classrooms with minimal effort and high clarity.
Related papers
- On-Device Language Models: A Comprehensive Review [26.759861320845467]
Review examines the challenges of deploying computationally expensive large language models on resource-constrained devices.
Paper investigates on-device language models, their efficient architectures, as well as state-of-the-art compression techniques.
Case studies of on-device language models from major mobile manufacturers demonstrate real-world applications and potential benefits.
arXiv Detail & Related papers (2024-08-26T03:33:36Z) - Model Compression in Practice: Lessons Learned from Practitioners Creating On-device Machine Learning Experiences [19.174587549247985]
We interviewed 30 experts at Apple that specialize in producing efficient models.
Our findings offer pragmatic considerations missing from prior work.
We distill design recommendations for tooling to help ease the difficulty of this work.
arXiv Detail & Related papers (2023-10-06T23:11:26Z) - A Survey of Machine Unlearning [56.017968863854186]
Recent regulations now require that, on request, private information about a user must be removed from computer systems.
ML models often remember' the old data.
Recent works on machine unlearning have not been able to completely solve the problem.
arXiv Detail & Related papers (2022-09-06T08:51:53Z) - Tiny Robot Learning: Challenges and Directions for Machine Learning in
Resource-Constrained Robots [57.27442333662654]
Machine learning (ML) has become a pervasive tool across computing systems.
Tiny robot learning is the deployment of ML on resource-constrained low-cost autonomous robots.
Tiny robot learning is subject to challenges from size, weight, area, and power (SWAP) constraints.
This paper gives a brief survey of the tiny robot learning space, elaborates on key challenges, and proposes promising opportunities for future work in ML system design.
arXiv Detail & Related papers (2022-05-11T19:36:15Z) - Flashlight: Enabling Innovation in Tools for Machine Learning [50.63188263773778]
We introduce Flashlight, an open-source library built to spur innovation in machine learning tools and systems.
We see Flashlight as a tool enabling research that can benefit widely used libraries downstream and bring machine learning and systems researchers closer together.
arXiv Detail & Related papers (2022-01-29T01:03:29Z) - Panoramic Learning with A Standardized Machine Learning Formalism [116.34627789412102]
This paper presents a standardized equation of the learning objective, that offers a unifying understanding of diverse ML algorithms.
It also provides guidance for mechanic design of new ML solutions, and serves as a promising vehicle towards panoramic learning with all experiences.
arXiv Detail & Related papers (2021-08-17T17:44:38Z) - Widening Access to Applied Machine Learning with TinyML [1.1678513163359947]
We describe our pedagogical approach to increasing access to applied machine-learning (ML) through a massive open online course (MOOC) on Tiny Machine Learning (TinyML)
To this end, a collaboration between academia (Harvard University) and industry (Google) produced a four-part MOOC that provides application-oriented instruction on how to develop solutions using TinyML.
The series is openly available on the edX MOOC platform, has no prerequisites beyond basic programming, and is designed for learners from a global variety of backgrounds.
arXiv Detail & Related papers (2021-06-07T23:31:47Z) - EXPATS: A Toolkit for Explainable Automated Text Scoring [2.299617836036273]
We present EXPATS, an open-source framework to allow users to develop and experiment with different ATS models quickly.
The toolkit also provides seamless integration with the Language Interpretability Tool (LIT) so that one can interpret and visualize models and their predictions.
arXiv Detail & Related papers (2021-04-07T19:29:06Z) - Technology Readiness Levels for Machine Learning Systems [107.56979560568232]
Development and deployment of machine learning systems can be executed easily with modern tools, but the process is typically rushed and means-to-an-end.
We have developed a proven systems engineering approach for machine learning development and deployment.
Our "Machine Learning Technology Readiness Levels" framework defines a principled process to ensure robust, reliable, and responsible systems.
arXiv Detail & Related papers (2021-01-11T15:54:48Z) - Deep Learning for Ultra-Reliable and Low-Latency Communications in 6G
Networks [84.2155885234293]
We first summarize how to apply data-driven supervised deep learning and deep reinforcement learning in URLLC.
To address these open problems, we develop a multi-level architecture that enables device intelligence, edge intelligence, and cloud intelligence for URLLC.
arXiv Detail & Related papers (2020-02-22T14:38:11Z) - The PHOTON Wizard -- Towards Educational Machine Learning Code
Generators [3.140265238474237]
We argue for a novel educational approach that builds upon the accessibility and acceptance of graphical user interfaces to convey programming skills to an applied-science target group.
We outline a proof-of-concept, open-source web application, the PHOTON Wizard, which dynamically translates GUI interactions into valid source code for the Python machine learning framework PHOTON.
arXiv Detail & Related papers (2020-02-13T10:42:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.