Multi-field Visualization: Trait design and trait-induced merge trees
- URL: http://arxiv.org/abs/2501.06238v1
- Date: Wed, 08 Jan 2025 10:13:32 GMT
- Title: Multi-field Visualization: Trait design and trait-induced merge trees
- Authors: Danhua Lei, Jochen Jankowai, Petar Hristov, Hamish Carr, Leif Denby, Talha Bin Masood, Ingrid Hotz,
- Abstract summary: Feature level sets (FLS) have shown significant potential in the analysis of multi-field data by using traits defined in attribute space to specify features.
In this work, we address key challenges in the practical use of FLS: trait design and feature selection for rendering.
We propose a decomposition of traits into simpler components, making the process more intuitive and computationally efficient.
- Score: 2.862576303934634
- License:
- Abstract: Feature level sets (FLS) have shown significant potential in the analysis of multi-field data by using traits defined in attribute space to specify features in the domain. In this work, we address key challenges in the practical use of FLS: trait design and feature selection for rendering. To simplify trait design, we propose a Cartesian decomposition of traits into simpler components, making the process more intuitive and computationally efficient. Additionally, we utilize dictionary learning results to automatically suggest point traits. To enhance feature selection, we introduce trait-induced merge trees (TIMTs), a generalization of merge trees for feature level sets, aimed at topologically analyzing tensor fields or general multi-variate data. The leaves in the TIMT represent areas in the input data that are closest to the defined trait, thereby most closely resembling the defined feature. This merge tree provides a hierarchy of features, enabling the querying of the most relevant and persistent features. Our method includes various query techniques for the tree, allowing the highlighting of different aspects. We demonstrate the cross-application capabilities of this approach through five case studies from different domains.
Related papers
- Evolution of SAE Features Across Layers in LLMs [1.5728609542259502]
We analyze statistical relationships between features in adjacent layers to understand how features evolve through a forward pass.
We provide a graph visualization interface for features and their most similar next-layer neighbors, and build communities of related features across layers.
arXiv Detail & Related papers (2024-10-11T14:46:49Z) - Feature Selection as Deep Sequential Generative Learning [50.00973409680637]
We develop a deep variational transformer model over a joint of sequential reconstruction, variational, and performance evaluator losses.
Our model can distill feature selection knowledge and learn a continuous embedding space to map feature selection decision sequences into embedding vectors associated with utility scores.
arXiv Detail & Related papers (2024-03-06T16:31:56Z) - Going Beyond Neural Network Feature Similarity: The Network Feature
Complexity and Its Interpretation Using Category Theory [64.06519549649495]
We provide the definition of what we call functionally equivalent features.
These features produce equivalent output under certain transformations.
We propose an efficient algorithm named Iterative Feature Merging.
arXiv Detail & Related papers (2023-10-10T16:27:12Z) - Multi-field Visualisation via Trait-induced Merge Trees [3.7332349900024013]
We employ the notion of traits defined in attribute space as introduced in the feature level sets framework.
The resulting distance field in attribute space induces a scalar field in the spatial domain that serves as input for topological data analysis.
The presented method includes different query methods for the tree which enable the highlighting of different aspects.
arXiv Detail & Related papers (2023-08-17T14:40:48Z) - Learning Implicit Feature Alignment Function for Semantic Segmentation [51.36809814890326]
Implicit Feature Alignment function (IFA) is inspired by the rapidly expanding topic of implicit neural representations.
We show that IFA implicitly aligns the feature maps at different levels and is capable of producing segmentation maps in arbitrary resolutions.
Our method can be combined with improvement on various architectures, and it achieves state-of-the-art accuracy trade-off on common benchmarks.
arXiv Detail & Related papers (2022-06-17T09:40:14Z) - Parallel feature selection based on the trace ratio criterion [4.30274561163157]
This work presents a novel parallel feature selection approach for classification, namely Parallel Feature Selection using Trace criterion (PFST)
Our method uses trace criterion, a measure of class separability used in Fisher's Discriminant Analysis, to evaluate feature usefulness.
The experiments show that our method can produce a small set of features in a fraction of the amount of time by the other methods under comparison.
arXiv Detail & Related papers (2022-03-03T10:50:33Z) - Intersection Regularization for Extracting Semantic Attributes [72.53481390411173]
We consider the problem of supervised classification, such that the features that the network extracts match an unseen set of semantic attributes.
For example, when learning to classify images of birds into species, we would like to observe the emergence of features that zoologists use to classify birds.
We propose training a neural network with discrete top-level activations, which is followed by a multi-layered perceptron (MLP) and a parallel decision tree.
arXiv Detail & Related papers (2021-03-22T14:32:44Z) - Rethinking Learnable Tree Filter for Generic Feature Transform [71.77463476808585]
Learnable Tree Filter presents a remarkable approach to model structure-preserving relations for semantic segmentation.
To relax the geometric constraint, we give the analysis by reformulating it as a Markov Random Field and introduce a learnable unary term.
For semantic segmentation, we achieve leading performance (82.1% mIoU) on the Cityscapes benchmark without bells-and-whistles.
arXiv Detail & Related papers (2020-12-07T07:16:47Z) - FREEtree: A Tree-based Approach for High Dimensional Longitudinal Data
With Correlated Features [2.00191482700544]
FREEtree is a tree-based method for high dimensional longitudinal data with correlated features.
It exploits the network structure of the features by first clustering them using weighted correlation network analysis.
It then conducts a screening step within each cluster of features and a selection step among the surviving features.
arXiv Detail & Related papers (2020-06-17T07:28:11Z) - Infinite Feature Selection: A Graph-based Feature Filtering Approach [78.63188057505012]
We propose a filtering feature selection framework that considers subsets of features as paths in a graph.
Going to infinite allows to constrain the computational complexity of the selection process.
We show that Inf-FS behaves better in almost any situation, that is, when the number of features to keep are fixed a priori.
arXiv Detail & Related papers (2020-06-15T07:20:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.