論文の概要: Intelligent Task Offloading: Advanced MEC Task Offloading and Resource Management in 5G Networks
- arxiv url: http://arxiv.org/abs/2501.06242v1
- Date: Wed, 08 Jan 2025 16:19:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-14 20:44:02.118882
- Title: Intelligent Task Offloading: Advanced MEC Task Offloading and Resource Management in 5G Networks
- Title(参考訳): インテリジェントタスクオフロード:5Gネットワークにおける高度なMECタスクオフロードとリソース管理
- Authors: Alireza Ebrahimi, Fatemeh Afghah,
- Abstract要約: 5G技術は、高速で信頼性が高く、低レイテンシな通信、モバイルブロードバンドの革新、大規模なIoT接続をサポートする業界を強化します。
User Equipment上のアプリケーションの複雑さが増すにつれて、リソース集約的なタスクを堅牢なサーバにオフロードすることは、レイテンシとスピードを改善する上で不可欠である。
本稿では,各UE間の通信資源を効率的に配分する手法を提案する。
5G技術の進化によって引き起こされる課題に対して、堅牢で効率的な解決策を提供する。
- 参考スコア(独自算出の注目度): 6.725133919174076
- License:
- Abstract: 5G technology enhances industries with high-speed, reliable, low-latency communication, revolutionizing mobile broadband and supporting massive IoT connectivity. With the increasing complexity of applications on User Equipment (UE), offloading resource-intensive tasks to robust servers is essential for improving latency and speed. The 3GPP's Multi-access Edge Computing (MEC) framework addresses this challenge by processing tasks closer to the user, highlighting the need for an intelligent controller to optimize task offloading and resource allocation. This paper introduces a novel methodology to efficiently allocate both communication and computational resources among individual UEs. Our approach integrates two critical 5G service imperatives: Ultra-Reliable Low Latency Communication (URLLC) and Massive Machine Type Communication (mMTC), embedding them into the decision-making framework. Central to this approach is the utilization of Proximal Policy Optimization, providing a robust and efficient solution to the challenges posed by the evolving landscape of 5G technology. The proposed model is evaluated in a simulated 5G MEC environment. The model significantly reduces processing time by 4% for URLLC users under strict latency constraints and decreases power consumption by 26% for mMTC users, compared to existing baseline models based on the reported simulation results. These improvements showcase the model's adaptability and superior performance in meeting diverse QoS requirements in 5G networks.
- Abstract(参考訳): 5G技術は、高速で信頼性が高く、低レイテンシな通信、モバイルブロードバンドの革新、大規模なIoT接続をサポートする業界を強化します。
User Equipment(UE)上のアプリケーションの複雑さが増すにつれて、リソース集約的なタスクを堅牢なサーバにオフロードすることは、レイテンシとスピードを改善する上で不可欠である。
3GPPのマルチアクセスエッジコンピューティング(MEC)フレームワークは、ユーザに近いタスクを処理することでこの問題に対処し、タスクのオフロードとリソース割り当てを最適化するインテリジェントコントローラの必要性を強調している。
本稿では,個々のUE間の通信資源と計算資源を効率的に分配する手法を提案する。
我々のアプローチでは、ウルトラ信頼性の低い低レイテンシ通信(URLLC)とマッシブマシンタイプ通信(mMTC)の2つの重要な5Gサービスインペラティブを統合し、それらを意思決定フレームワークに組み込む。
このアプローチの中心となるのは,5G技術の進化にともなう課題に対して,堅牢かつ効率的なソリューションを提供する,近接政策最適化の利用である。
提案手法をシミュレーションした5G MEC環境において評価する。
このモデルでは,URLLC利用者の処理時間を厳密なレイテンシ制約下で4%削減し,mMTC利用者の消費電力を26%削減する。
これらの改善は、5Gネットワークにおける様々なQoS要件を満たす際のモデルの適応性と優れた性能を示す。
関連論文リスト
- Reinforcement Learning Controlled Adaptive PSO for Task Offloading in IIoT Edge Computing [0.0]
産業用IoT(Industrial Internet of Things)アプリケーションは、低レイテンシで重いデータ負荷を処理するために、効率的なタスクオフロードを要求する。
モバイルエッジコンピューティング(MEC)は、レイテンシとサーバ負荷を低減するために、デバイスに計算を近づける。
本稿では,適応粒子群最適化(APSO)と強化学習,特にソフトアクタ批判(SAC)を組み合わせた新しい解を提案する。
論文 参考訳(メタデータ) (2025-01-25T13:01:54Z) - Secure Resource Allocation via Constrained Deep Reinforcement Learning [49.15061461220109]
リソース割り当て、タスクオフロード、セキュリティ、パフォーマンスのバランスをとるフレームワークであるSARMTOを紹介します。
SARMTOは5つのベースラインアプローチを一貫して上回り、最大40%のシステムコスト削減を実現している。
これらの拡張は、複雑な分散コンピューティング環境におけるリソース管理に革命をもたらすSARMTOの可能性を強調している。
論文 参考訳(メタデータ) (2025-01-20T15:52:43Z) - Edge computing service deployment and task offloading based on
multi-task high-dimensional multi-objective optimization [5.64850919046892]
本研究では,マルチユーザ環境におけるサービス展開とタスクオフロードの課題について検討する。
レイテンシ、エネルギー消費、コストを考慮せずに安定したサービス提供を確保するために、ネットワークの信頼性も組み込まれている。
エッジサーバの適切な使用を促進するため、第4のタスクオフロード目的としてロードバランシングを導入している。
論文 参考訳(メタデータ) (2023-12-07T07:30:47Z) - Federated Meta-Learning for Traffic Steering in O-RAN [1.400970992993106]
フェデレーション・メタラーニング(FML)に基づくRATアロケーションのアルゴリズムを提案する。
LTEおよび5G NRサービス技術を含むシミュレーション環境を設計した。
論文 参考訳(メタデータ) (2022-09-13T10:39:41Z) - Artificial Intelligence Empowered Multiple Access for Ultra Reliable and
Low Latency THz Wireless Networks [76.89730672544216]
テラヘルツ(THz)無線ネットワークは、第5世代(B5G)以上の時代を触媒すると予想されている。
いくつかのB5Gアプリケーションの超信頼性と低レイテンシ要求を満たすためには、新しいモビリティ管理アプローチが必要である。
本稿では、インテリジェントなユーザアソシエーションとリソースアロケーションを実現するとともに、フレキシブルで適応的なモビリティ管理を可能にする、全体論的MAC層アプローチを提案する。
論文 参考訳(メタデータ) (2022-08-17T03:00:24Z) - Collaborative Intelligent Reflecting Surface Networks with Multi-Agent
Reinforcement Learning [63.83425382922157]
インテリジェント・リフレクション・サーフェス(IRS)は将来の無線ネットワークに広く応用されることが想定されている。
本稿では,エネルギー収穫能力を備えた協調型IRSデバイスを用いたマルチユーザ通信システムについて検討する。
論文 参考訳(メタデータ) (2022-03-26T20:37:14Z) - Reinforcement Learning-Empowered Mobile Edge Computing for 6G Edge
Intelligence [76.96698721128406]
モバイルエッジコンピューティング(MEC)は、第5世代(5G)ネットワークなどにおける計算と遅延に敏感なタスクのための新しいパラダイムであると考えた。
本稿では、フリー対応RLに関する総合的な研究レビューと、開発のための洞察を提供する。
論文 参考訳(メタデータ) (2022-01-27T10:02:54Z) - Federated Learning over Wireless IoT Networks with Optimized
Communication and Resources [98.18365881575805]
協調学習技術のパラダイムとしてのフェデレートラーニング(FL)は研究の注目を集めている。
無線システム上での高速応答および高精度FLスキームの検証が重要である。
提案する通信効率のよいフェデレーション学習フレームワークは,強い線形速度で収束することを示す。
論文 参考訳(メタデータ) (2021-10-22T13:25:57Z) - Deep Reinforcement Learning Based Multidimensional Resource Management
for Energy Harvesting Cognitive NOMA Communications [64.1076645382049]
エネルギー収穫(EH)、認知無線(CR)、非直交多重アクセス(NOMA)の組み合わせはエネルギー効率を向上させるための有望な解決策である。
本稿では,決定論的CR-NOMA IoTシステムにおけるスペクトル,エネルギー,時間資源管理について検討する。
論文 参考訳(メタデータ) (2021-09-17T08:55:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。